Cassandra G Extavour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8580469/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development (Cambridge), 2003, 130, 5869-5884.	2.5	677
2	The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biology, 2017, 15, 62.	3.8	286
3	The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima. PLoS Biology, 2014, 12, e1002005.	5.6	221
4	The molecular machinery of germ line specification. Molecular Reproduction and Development, 2010, 77, 3-18.	2.0	156
5	vasaandnanosexpression patterns in a sea anemone and the evolution of bilaterian germ cell specification mechanisms. Evolution & Development, 2005, 7, 201-215.	2.0	132
6	The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. ELife, 2016, 5, .	6.0	130
7	Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biology, 2019, 20, 64.	8.8	114
8	The maternal and early embryonic transcriptome of the milkweed bug Oncopeltus fasciatus. BMC Genomics, 2011, 12, 61.	2.8	110
9	Are we there yet? Tracking the development of new model systems. Trends in Genetics, 2008, 24, 353-360.	6.7	109
10	Vasa protein expression is restricted to the small micromeres of the sea urchin, but is inducible in other lineages early in development. Developmental Biology, 2008, 314, 276-286.	2.0	101
11	Evolution of the bilaterian germ line: lineage origin and modulation of specification mechanisms. Integrative and Comparative Biology, 2007, 47, 770-785.	2.0	100
12	The significance and scope of evolutionary developmental biology: a vision for the 21st century. Evolution & Development, 2015, 17, 198-219.	2.0	92
13	De novo assembly and characterization of a maternal and developmental transcriptome for the emerging model crustacean Parhyale hawaiensis. BMC Genomics, 2011, 12, 581.	2.8	85
14	Embryonic development of the cricket Gryllus bimaculatus. Developmental Biology, 2016, 411, 140-156.	2.0	81
15	Insect egg size and shape evolve with ecology but not developmental rate. Nature, 2019, 571, 58-62.	27.8	78
16	The fate of isolated blastomeres with respect to germ cell formation in the amphipod crustacean Parhyale hawaiensis. Developmental Biology, 2005, 277, 387-402.	2.0	67
17	Germ Cell Specification Requires Zygotic Mechanisms Rather Than Germ Plasm in a Basally Branching Insect. Current Biology, 2013, 23, 835-842.	3.9	65
18	Hox gene expression in the harvestman <i>Phalangium opilio</i> reveals divergent patterning of the chelicerate opisthosoma. Evolution & Development, 2012, 14, 450-463.	2.0	64

CASSANDRA G EXTAVOUR

#	Article	IF	CITATIONS
19	Hox gene duplications correlate with posterior heteronomy in scorpions. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140661.	2.6	59
20	Bone Morphogenetic Protein (BMP) signaling in animal reproductive system development and function. Developmental Biology, 2017, 427, 258-269.	2.0	59
21	oskar Predates the Evolution of Germ Plasm in Insects. Current Biology, 2012, 22, 2278-2283.	3.9	58
22	BMP signaling is required for the generation of primordial germ cells in an insect. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4133-4138.	7.1	57
23	A Comprehensive Reference Transcriptome Resource for the Common House Spider Parasteatoda tepidariorum. PLoS ONE, 2014, 9, e104885.	2.5	57
24	The roles of cell size and cell number in determining ovariole number in Drosophila. Developmental Biology, 2012, 363, 279-289.	2.0	54
25	Notch/Delta signalling is not required for segment generation in the basally branching insect <i>Gryllus bimaculatus</i> . Development (Cambridge), 2011, 138, 5015-5026.	2.5	51
26	The Hippo Pathway Regulates Homeostatic Growth of Stem Cell Niche Precursors in the Drosophila Ovary. PLoS Genetics, 2015, 11, e1004962.	3.5	50
27	Causes and evolutionary consequences of primordial germ-cell specification mode in metazoans. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5784-5791.	7.1	50
28	vasa and piwi are required for mitotic integrity in early embryogenesis in the spider Parasteatoda tepidariorum. Developmental Biology, 2015, 402, 276-290.	2.0	49
29	Convergent evolution of a reproductive trait through distinct developmental mechanisms in Drosophila. Developmental Biology, 2012, 372, 120-130.	2.0	42
30	Insulin signalling underlies both plasticity and divergence of a reproductive trait in <i>Drosophila</i> . Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132673.	2.6	42
31	Evolution of the chelicera: a <i>dachshund</i> domain is retained in the deutocerebral appendage of Opiliones (Arthropoda, Chelicerata). Evolution & Development, 2012, 14, 522-533.	2.0	41
32	<i>Distalâ€less</i> and <i>dachshund</i> pattern both plesiomorphic and apomorphic structures in chelicerates: <scp>RNA</scp> interference in the harvestman <i>Phalangium opilio</i> (<scp>O</scp> piliones). Evolution & Development, 2013, 15, 228-242.	2.0	41
33	Insights into the genomic evolution of insects from cricket genomes. Communications Biology, 2021, 4, 733.	4.4	41
34	Developmental Gene Discovery in a Hemimetabolous Insect: De Novo Assembly and Annotation of a Transcriptome for the Cricket Gryllus bimaculatus. PLoS ONE, 2013, 8, e61479.	2.5	41
35	The transcriptional repressor Blimp-1 acts downstream of BMP signaling to generate primordial germ cells in the cricket <i>Gryllus bimaculatus</i> . Development (Cambridge), 2016, 143, 255-263.	2.5	36
36	Evidence against a germ plasm in the milkweed bug <i>Oncopeltus fasciatus</i> , a hemimetabolous insect. Biology Open, 2013, 2, 556-568.	1.2	35

#	Article	IF	CITATIONS
37	Patterns of cell lineage, movement, and migration from germ layer specification to gastrulation in the amphipod crustacean Parhyale hawaiensis. Developmental Biology, 2011, 359, 110-123.	2.0	31
38	A conserved genetic mechanism specifies deutocerebral appendage identity in insects and arachnids. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150698.	2.6	29
39	A dataset of egg size and shape from more than 6,700 insect species. Scientific Data, 2019, 6, 104.	5.3	26
40	Ancestral and offspring nutrition interact to affect life-history traits in <i>Drosophila melanogaster</i> . Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182778.	2.6	26
41	Rapid Evolution of Ovarian-Biased Genes in the Yellow Fever Mosquito (<i>Aedes aegypti</i>). Genetics, 2017, 206, 2119-2137.	2.9	22
42	Germ cell selection in genetic mosaics in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11341-11346.	7.1	21
43	ASGARD: an open-access database of annotated transcriptomes for emerging model arthropod species. Database: the Journal of Biological Databases and Curation, 2012, 2012, bas048-bas048.	3.0	21
44	Selection shapes turnover and magnitude of sex-biased expression in Drosophila gonads. BMC Evolutionary Biology, 2019, 19, 60.	3.2	21
45	Bacterial contribution to genesis of the novel germ line determinant oskar. ELife, 2020, 9, .	6.0	21
46	Codon and Amino Acid Usage Are Shaped by Selection Across Divergent Model Organisms of the Pancrustacea. G3: Genes, Genomes, Genetics, 2015, 5, 2307-2321.	1.8	20
47	Absence of a Faster-X Effect in Beetles (<i>Tribolium</i> , Coleoptera). G3: Genes, Genomes, Genetics, 2020, 10, 1125-1136.	1.8	20
48	Expression-Linked Patterns of Codon Usage, Amino Acid Frequency, and Protein Length in the Basally Branching Arthropod <i>Parasteatoda tepidariorum</i> . Genome Biology and Evolution, 2016, 8, 2722-2736.	2.5	19
49	Repeated loss of variation in insect ovary morphology highlights the role of development in life-history evolution. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210150.	2.6	19
50	Expression and function of spineless orthologs correlate with distal deutocerebral appendage morphology across Arthropoda. Developmental Biology, 2017, 430, 224-236.	2.0	18
51	Reproductive Capacity Evolves in Response to Ecology through Common Changes in Cell Number in Hawaiian Drosophila. Current Biology, 2019, 29, 1877-1884.e6.	3.9	18
52	Null hypotheses for developmental evolution. Development (Cambridge), 2020, 147, .	2.5	18
53	Subdivision of arthropod cap-n-collar expression domains is restricted to Mandibulata. EvoDevo, 2014, 5, 3.	3.2	17
54	Convergent evolution of germ granule nucleators: A hypothesis. Stem Cell Research, 2017, 24, 188-194.	0.7	16

CASSANDRA G EXTAVOUR

#	Article	IF	CITATIONS
55	Patterns of molecular evolution of the germ line specification gene oskar suggest that a novel domain may contribute to functional divergence in Drosophila. Development Genes and Evolution, 2014, 224, 65-77.	0.9	15
56	A premeiotic function for <i>boule</i> in the planarian <i>Schmidtea mediterranea</i> . Proceedings of the United States of America, 2016, 113, E3509-18.	7.1	15
57	Evolutionary dynamics of sexâ€biased genes expressed in cricket brains and gonads. Journal of Evolutionary Biology, 2021, 34, 1188-1211.	1.7	14
58	Identification of a putative germ plasm in the amphipod Parhyale hawaiensis. EvoDevo, 2013, 4, 34.	3.2	12
59	Topology-driven protein-protein interaction network analysis detects genetic sub-networks regulating reproductive capacity. ELife, 2020, 9, .	6.0	12
60	Refuting the hypothesis that the acquisition of germ plasm accelerates animal evolution. Nature Communications, 2016, 7, 12637.	12.8	11
61	Oogenesis: Making the Mos of Meiosis. Current Biology, 2009, 19, R489-R491.	3.9	10
62	The Cricket Gryllus bimaculatus: Techniques for Quantitative and Functional Genetic Analyses of Cricket Biology. Results and Problems in Cell Differentiation, 2019, 68, 183-216.	0.7	10
63	Counting in oogenesis. Cell and Tissue Research, 2011, 344, 207-212.	2.9	9
64	High-throughput live-imaging of embryos in microwell arrays using a modular specimen mounting system. Biology Open, 2018, 7, .	1.2	9
65	Adaptation of codon and amino acid use for translational functions in highly expressed cricket genes. BMC Genomics, 2021, 22, 234.	2.8	9
66	Contrasting patterns of molecular evolution in metazoan germ line genes. BMC Evolutionary Biology, 2019, 19, 53.	3.2	8
67	Phylotranscriptomics Reveals Discordance in the Phylogeny of Hawaiian <i>Drosophila</i> and <i>Scaptomyza</i> (Diptera: Drosophilidae). Molecular Biology and Evolution, 2022, 39, .	8.9	8
68	Genomics and genome editing techniques of crickets, an emerging model insect for biology and food science. Current Opinion in Insect Science, 2022, 50, 100881.	4.4	6
69	Gray anatomy: phylogenetic patterns of somatic gonad structures and reproductive strategies across the Bilateria. Integrative and Comparative Biology, 2007, 47, 420-426.	2.0	5
70	Long-Lost Relative Claims Orphan Gene: oskar in a Wasp. PLoS Genetics, 2011, 7, e1002045.	3.5	5
71	Hox genes limit germ cell formation in the short germ insect <i>Gryllus bimaculatus</i> . Proceedings of the United States of America, 2019, 116, 16430-16435.	7.1	5
72	Injecting Gryllus bimaculatus Eggs. Journal of Visualized Experiments, 2019, , .	0.3	5

#	Article	IF	CITATIONS
73	Evolution of a Cytoplasmic Determinant: Evidence for the Biochemical Basis of Functional Evolution of the Novel Germ Line Regulator Oskar. Molecular Biology and Evolution, 2021, 38, 5491-5513.	8.9	5
74	Hold the germ cells, I'm on duty. BioEssays, 2004, 26, 1263-1267.	2.5	4
75	Shared Cell Biological Functions May Underlie Pleiotropy of Molecular Interactions in the Germ Lines and Nervous Systems of Animals. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	4
76	Ablation of a Single Cell From Eight-cell Embryos of the Amphipod Crustacean Parhyale hawaiensis . Journal of Visualized Experiments, 2014, , .	0.3	3
77	Evidence of multifaceted functions of codon usage in translation within the model beetle Tribolium castaneum. DNA Research, 2019, 26, 473-484.	3.4	3
78	Distinct gene expression dynamics in germ line and somatic tissue during ovariole morphogenesis in <i>Drosophila melanogaster</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	3
79	Live long and prosper: " <scp>G</scp> ermline stem cell maintenance revisited―(retrospective on DOI:) Tj ET	Qq1_1 0.78 2.5	84314 rgB ⁻
80	Editorial overview: Developmental mechanisms, patterning and evolution: New models for genetics and development — diversity at last. Current Opinion in Genetics and Development, 2016, 39, iv-vi.	3.3	2
81	Redefining Stem Cells and Assembling Germ Plasm. , 2010, , 360-397.		2
82	Cricket: The third domesticated insect. Current Topics in Developmental Biology, 2022, 147, 291-306.	2.2	2
83	04-P012 Germ line specification in the milkweed bug, Oncopeltus fasciatus (Hemiptera). Mechanisms of Development, 2009, 126, S110.	1.7	0
84	Editorial Overview: Development, regulation and evolution of organ systems. Current Opinion in Insect Science, 2016, 13, vii-ix.	4.4	0
85	In the Spotlight—Established researcher. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2021, 336, 589-590.	1.3	0
86	<i>JEZB</i> special issue on eggs. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2021, 336, 593-594.	1.3	0