
David G Standaert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8580134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathological α-synuclein recruits LRRK2 expressing pro-inflammatory monocytes to the brain. Molecular Neurodegeneration, 2022, 17, 7.	10.8	34
2	Striatal Synaptic Dysfunction in Dystonia and Levodopa-Induced Dyskinesia. Neurobiology of Disease, 2022, 166, 105650.	4.4	18
3	Transcriptional analysis of peripheral memory T cells reveals Parkinson's disease-specific gene signatures. Npj Parkinson's Disease, 2022, 8, 30.	5.3	20
4	The emerging postural instability phenotype in idiopathic Parkinson disease. Npj Parkinson's Disease, 2022, 8, 28.	5.3	10
5	Outcomes Impacting Quality of Life in Advanced Parkinson's Disease Patients Treated with Levodopa-Carbidopa Intestinal Gel. Journal of Parkinson's Disease, 2022, 12, 917-926.	2.8	9
6	RORÎ ³ t-Expressing Pathogenic CD4+ T Cells Cause Brain Inflammation during Chronic Colitis. Journal of Immunology, 2022, 208, 2054-2066.	0.8	11
7	Alpha-synuclein–mediated DNA damage, STING activation, and neuroinflammation in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2204058119.	7.1	13
8	Image Quantification for TSPO PET with a Novel Image-Derived Input Function Method. Diagnostics, 2022, 12, 1161.	2.6	7
9	<scp>John Q. Trojanowski, MD, PhD</scp> (1946–2022). Movement Disorders, 2022, 37, 1123-1124.	3.9	1
10	Ten Unsolved Questions About Neuroinflammation in Parkinson's Disease. Movement Disorders, 2021, 36, 16-24.	3.9	133
11	CD4 T cells mediate brain inflammation and neurodegeneration in a mouse model of Parkinson'sÂdisease. Brain, 2021, 144, 2047-2059.	7.6	124
12	The TOPAZ study: a home-based trial of zoledronic acid to prevent fractures in neurodegenerative parkinsonism. Npj Parkinson's Disease, 2021, 7, 16.	5.3	10
13	Sex-based differences in the activation of peripheral blood monocytes in early Parkinson disease. Npj Parkinson's Disease, 2021, 7, 36.	5.3	26
14	Gene-Environment Interactions in Progressive Supranuclear Palsy. Frontiers in Neurology, 2021, 12, 664796.	2.4	1
15	Impact of carbidopa-levodopa enteral suspension on quality of life and activities of daily living in patients with advanced Parkinson's disease: Results from a pooled meta-analysis. Parkinsonism and Related Disorders, 2021, 86, 52-57.	2.2	2
16	Templated α-synuclein inclusion formation is independent of endogenous tau. ENeuro, 2021, 8, ENEURO.0458-20.2021.	1.9	9
17	Dysregulation of the Adaptive Immune System in Patients With Early-Stage Parkinson Disease. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	46
18	Exploring human-genome gut-microbiome interaction in Parkinson's disease. Npj Parkinson's Disease, 2021, 7, 74.	5.3	15

#	Article	IF	CITATIONS
19	<scp>DUOGLOBE</scp> : Oneâ€Year Outcomes in a <scp>Realâ€World</scp> Study of Levodopa Carbidopa Intestinal Gel for Parkinson's Disease. Movement Disorders Clinical Practice, 2021, 8, 1061-1074.	1.5	22
20	Pharmacogenetic Predictors of Cannabidiol Response and Tolerability in Treatmentâ€Resistant Epilepsy. Clinical Pharmacology and Therapeutics, 2021, 110, 1368-1380.	4.7	22
21	The TCR repertoire of α-synuclein-specific T cells in Parkinson's disease is surprisingly diverse. Scientific Reports, 2021, 11, 302.	3.3	26
22	Validation and clinical value of the MANAGE-PD tool: A clinician-reported tool to identify Parkinson's disease patients inadequately controlled on oral medications. Parkinsonism and Related Disorders, 2021, 92, 59-66.	2.2	23
23	Bridging the Gaps: More Inclusive Research Needed to Fully Understand Parkinson's Disease. Movement Disorders, 2020, 35, 231-234.	3.9	22
24	Behavioral defects associated with amygdala and cortical dysfunction in mice with seeded α-synuclein inclusions. Neurobiology of Disease, 2020, 134, 104708.	4.4	47
25	Innate and adaptive immune responses in Parkinson's disease. Progress in Brain Research, 2020, 252, 169-216.	1.4	64
26	Understanding the relationship between freezing of gait and other progressive supranuclear palsy features. Parkinsonism and Related Disorders, 2020, 78, 56-60.	2.2	9
27	Application of the â€~5-2-1' screening criteria in advanced Parkinson's disease: interim analysis of DUOGLOBE. Neurodegenerative Disease Management, 2020, 10, 309-323.	2.2	33
28	Innovative Recruitment Strategies to Increase Diversity of Participation in Parkinson's Disease Research: The Fox Insight Cohort Experience. Journal of Parkinson's Disease, 2020, 10, 665-675.	2.8	25
29	Brain Alchemy: Transforming Astrocytes into Neurons for Neurodegenerative Disease. Movement Disorders Clinical Practice, 2020, 7, 902-903.	1.5	0
30	Characterizing dysbiosis of gut microbiome in PD: evidence for overabundance of opportunistic pathogens. Npj Parkinson's Disease, 2020, 6, 11.	5.3	140
31	Defining research priorities in dystonia. Neurology, 2020, 94, 526-537.	1.1	26
32	Disease modification and biomarker development in Parkinson disease. Neurology, 2020, 94, 481-494.	1.1	103
33	Comparison of an Online-Only Parkinson's Disease Research Cohort to Cohorts Assessed In Person. Journal of Parkinson's Disease, 2020, 10, 677-691.	2.8	15
34	T cell infiltration in both human multiple system atrophy and a novel mouse model of the disease. Acta Neuropathologica, 2020, 139, 855-874.	7.7	66
35	<scp>Onceâ€Weekly</scp> Subcutaneous Delivery of <scp>Polymerâ€Linked</scp> Rotigotine (<scp>SER</scp> â€214) Provides Continuous Plasma Levels in Parkinson's Disease Patients. Movement Disorders, 2020, 35, 1055-1061.	3.9	24
36	Progressive Supranuclear Palsy and Statin Use. Movement Disorders, 2020, 35, 1253-1257.	3.9	2

#	Article	IF	CITATIONS
37	α-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson's disease. Nature Communications, 2020, 11, 1875.	12.8	239
38	Hypertension and progressive supranuclear palsy. Parkinsonism and Related Disorders, 2019, 66, 166-170.	2.2	12
39	Are the International Parkinson disease and Movement Disorder Society progressive supranuclear palsy (IPMDS-PSP) diagnostic criteria accurate enough to differentiate common PSP phenotypes?. Parkinsonism and Related Disorders, 2019, 69, 34-39.	2.2	18
40	Dystonia and levodopa-induced dyskinesias in Parkinson's disease: Is there a connection?. Neurobiology of Disease, 2019, 132, 104579.	4.4	27
41	Diverse Mechanisms Lead to Common Dysfunction of Striatal Cholinergic Interneurons in Distinct Genetic Mouse Models of Dystonia. Journal of Neuroscience, 2019, 39, 7195-7205.	3.6	38
42	Feasibility and safety of lumbar puncture in the Parkinson's disease research participants: Parkinson's Progression Marker Initiative (PPMI). Parkinsonism and Related Disorders, 2019, 62, 201-209.	2.2	15
43	Widespread Tau-Specific CD4 T Cell Reactivity in the General Population. Journal of Immunology, 2019, 203, 84-92.	0.8	36
44	Reply to: DUOPA® is an Excellent Alternative Treatment but with Some Caveats. Movement Disorders Clinical Practice, 2019, 6, 336-337.	1.5	1
45	Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases. Neurology, 2019, 92, 329-337.	1.1	194
46	Child Neurology: Spastic paraparesis and dystonia with a novel ADCY5 mutation. Neurology, 2019, 93, 510-514.	1.1	7
47	STANDAERT, David G.: Alabama/USA. , 2019, , 139-142.		0
48	Lifetime exposure to estrogen and progressive supranuclear palsy: Environmental and Genetic PSP study. Movement Disorders, 2018, 33, 468-472.	3.9	14
49	Longâ€ŧerm safety and efficacy of levodopa arbidopa intestinal gel in advanced Parkinson's disease. Movement Disorders, 2018, 33, 928-936.	3.9	64
50	Systematic evaluation of levodopa-carbidopa intestinal gel patient-responder characteristics. Npj Parkinson's Disease, 2018, 4, 4.	5.3	8
51	Anti-inflammatory drug use and progressive supranuclear palsy. Parkinsonism and Related Disorders, 2018, 48, 89-92.	2.2	6
52	Peripheral monocyte entry is required for alpha-Synuclein induced inflammation and Neurodegeneration in a model of Parkinson disease. Experimental Neurology, 2018, 300, 179-187.	4.1	163
53	Targeting of the class II transactivator attenuates inflammation and neurodegeneration in an alpha-synuclein model of Parkinson's disease. Journal of Neuroinflammation, 2018, 15, 244.	7.2	61
54	Implementing Levodopaâ€Carbidopa Intestinal Gel for Parkinson Disease: Insights from US Practitioners. Movement Disorders Clinical Practice, 2018, 5, 383-393.	1.5	19

#	Article	IF	CITATIONS
55	Cannabidiol improves frequency and severity of seizures and reduces adverse events in an open-label add-on prospective study. Epilepsy and Behavior, 2018, 87, 131-136.	1.7	110
56	Effects of Subthalamic Nucleus Deep Brain Stimulation on Objective Sleep Outcomes in Parkinson's Disease. Movement Disorders Clinical Practice, 2017, 4, 183-190.	1.5	19
57	Biomarkerâ€driven phenotyping in Parkinson's disease: A translational missing link in diseaseâ€modifying clinical trials. Movement Disorders, 2017, 32, 319-324.	3.9	145
58	Strength of cholinergic tone dictates the polarity of dopamine D2 receptor modulation of striatal cholinergic interneuron excitability in DYT1 dystonia. Experimental Neurology, 2017, 295, 162-175.	4.1	64
59	Dysregulation of BET proteins in levodopa-induced dyskinesia. Neurobiology of Disease, 2017, 102, 125-132.	4.4	21
60	The effect of unilateral subthalamic nucleus deep brain stimulation on depression in Parkinson's disease. Brain Stimulation, 2017, 10, 651-656.	1.6	23
61	Understanding falls in progressive supranuclear palsy. Parkinsonism and Related Disorders, 2017, 35, 75-81.	2.2	15
62	Genetic influences on cognition in progressive supranuclear palsy. Movement Disorders, 2017, 32, 1764-1771.	3.9	6
63	What would Dr. James Parkinson think today? Mutations in betaâ€glucocerebrosidase and risk of Parkinson's disease. Movement Disorders, 2017, 32, 1341-1342.	3.9	3
64	Past, present, and future of Parkinson's disease: A special essay on the 200th Anniversary of the Shaking Palsy. Movement Disorders, 2017, 32, 1264-1310.	3.9	608
65	Effect of Levodopaâ€carbidopa Intestinal Gel on Nonâ€motor Symptoms in Patients with Advanced Parkinson's Disease. Movement Disorders Clinical Practice, 2017, 4, 829-837.	1.5	49
66	Evaluation of the safety and immunomodulatory effects of sargramostim in a randomized, double-blind phase 1 clinical Parkinson's disease trial. Npj Parkinson's Disease, 2017, 3, 10.	5.3	98
67	Clinical development of a poly(2-oxazoline) (POZ) polymer therapeutic for the treatment of Parkinson's disease – Proof of concept of POZ as a versatile polymer platform for drug development in multiple therapeutic indications. European Polymer Journal, 2017, 88, 524-552.	5.4	124
68	The Role of Stress as a Risk Factor for Progressive Supranuclear Palsy. Journal of Parkinson's Disease, 2017, 7, 377-383.	2.8	4
69	Evaluation of AZD1446 as a Therapeutic in DYT1 Dystonia. Frontiers in Systems Neuroscience, 2017, 11, 43.	2.5	8
70	<scp>B</scp> iomarkers in <scp>P</scp> arkinson's disease: <scp>F</scp> rom pathophysiology to early diagnosis. Movement Disorders, 2016, 31, 769-770.	3.9	4
71	Environmental and occupational risk factors for progressive supranuclear palsy: Caseâ€control study. Movement Disorders, 2016, 31, 644-652.	3.9	53
72	Ser(P)â€1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson's disease. Movement Disorders, 2016, 31, 1543-1550.	3.9	144

#	Article	IF	CITATIONS
73	Inhibition of the JAK/STAT Pathway Protects Against $\hat{I}\pm$ -Synuclein-Induced Neuroinflammation and Dopaminergic Neurodegeneration. Journal of Neuroscience, 2016, 36, 5144-5159.	3.6	204
74	CoQ10 in progressive supranuclear palsy. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e266.	6.0	45
75	SNPing <i>SCNA</i> regulatory elements gives a CRISPR view of genetic susceptibility in Parkinson's disease. Movement Disorders, 2016, 31, 1479-1479.	3.9	3
76	Clinimetric Analysis of the Motor Section of the Progressive Supranuclear Palsy Rating Scale: Reliability and Factor Analysis. Movement Disorders Clinical Practice, 2016, 3, 65-67.	1.5	6
77	Invisible Killers. Movement Disorders, 2016, 31, 44-44.	3.9	1
78	How can <scp>rAAV</scp> â€i±â€synuclein and the fibril αâ€synuclein models advance our understanding of Parkinson's disease?. Journal of Neurochemistry, 2016, 139, 131-155.	3.9	84
79	Glucocerebrosidase, <scp>P</scp> arkinson disease, and the "senses and intellectâ€. Annals of Neurology, 2016, 80, 660-661.	5.3	Ο
80	Cholinergic regulation of striatal dopamine release: New light in dark basements. Movement Disorders, 2016, 31, 1796-1796.	3.9	0
81	Dynamic DNA Methylation Regulates Levodopa-Induced Dyskinesia. Journal of Neuroscience, 2016, 36, 6514-6524.	3.6	33
82	microRNA-155 Regulates Alpha-Synuclein-Induced Inflammatory Responses in Models of Parkinson Disease. Journal of Neuroscience, 2016, 36, 2383-2390.	3.6	195
83	The Metabotropic Glutamate Receptor 4 Positive Allosteric Modulator ADX88178 Inhibits Inflammatory Responses in Primary Microglia. Journal of NeuroImmune Pharmacology, 2016, 11, 231-237.	4.1	32
84	Correlates of excessive daytime sleepiness in de novo Parkinson's disease: A case control study. Movement Disorders, 2015, 30, 1371-1381.	3.9	78
85	Reply to letter: Suicide in <scp>P</scp> arkinson's disease patients treated with levodopaâ€carbidopa Intestinal Gel. Movement Disorders, 2015, 30, 1435-1436.	3.9	5
86	A Full-Brain, Bootstrapped Analysis of Diffusion Tensor Imaging Robustly Differentiates Parkinson Disease from Healthy Controls. Neuroinformatics, 2015, 13, 7-18.	2.8	14
87	Role of α-Synuclein in Inducing Innate and Adaptive Immunity in Parkinson Disease. Journal of Parkinson's Disease, 2015, 5, 1-19.	2.8	174
88	Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia. Progress in Neurobiology, 2015, 127-128, 91-107.	5.7	136
89	Levodopaâ€carbidopa intestinal gel in advanced Parkinson's disease: Final 12â€month, openâ€label results. Movement Disorders, 2015, 30, 500-509.	3.9	199
90	Cognitive performance and neuropsychiatric symptoms in early, untreated Parkinson's disease. Movement Disorders, 2015, 30, 919-927.	3.9	244

#	Article	IF	CITATIONS
91	Fractalkine Signaling Regulates the Inflammatory Response in an α-Synuclein Model of Parkinson Disease. PLoS ONE, 2015, 10, e0140566.	2.5	54
92	Differential LRRK2 expression in the cortex, striatum, and substantia nigra in transgenic and nontransgenic rodents. Journal of Comparative Neurology, 2014, 522, Spc1-Spc1.	1.6	2
93	Scientific perspectives. Movement Disorders, 2014, 29, 1230-1230.	3.9	0
94	Reaping what you sow: Crossâ€seeding between aggregationâ€prone proteins in neurodegeneration. Movement Disorders, 2014, 29, 306-306.	3.9	4
95	Fiber-Modified Adenovirus for Central Nervous System Parkinson's Disease Gene Therapy. Viruses, 2014, 6, 3293-3310.	3.3	13
96	Differential LRRK2 expression in the cortex, striatum, and substantia nigra in transgenic and nontransgenic rodents. Journal of Comparative Neurology, 2014, 522, 2465-2480.	1.6	110
97	Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson's disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurology, The, 2014, 13, 141-149.	10.2	547
98	Novel, high-intensity exercise prescription improves muscle mass, mitochondrial function, and physical capacity in individuals with Parkinson's disease. Journal of Applied Physiology, 2014, 116, 582-592.	2.5	96
99	Monocytes and Parkinson's Disease: Invaders From Outside?. Movement Disorders, 2014, 29, 1242-1242.	3.9	7
100	Basal Ganglia Disorders. , 2014, , .		0
101	Basal Ganglia Disorders. , 2013, , 1-39.		0
102	Metabolomics and the search for biomarkers in Parkinson's disease. Movement Disorders, 2013, 28, 1620-1621.	3.9	8
103	LRRK2 secretion in exosomes is regulated by 14-3-3. Human Molecular Genetics, 2013, 22, 4988-5000.	2.9	142
104	Levodopa–carbidopa intestinal gel in advanced Parkinson's disease open-label study: Interim results. Parkinsonism and Related Disorders, 2013, 19, 339-345.	2.2	95
105	MHCII Is Required for Â-Synuclein-Induced Activation of Microglia, CD4 T Cell Proliferation, and Dopaminergic Neurodegeneration. Journal of Neuroscience, 2013, 33, 9592-9600.	3.6	304
106	Rotigotine polyoxazoline conjugate SERâ€214 provides robust and sustained antiparkinsonian benefit. Movement Disorders, 2013, 28, 1675-1682.	3.9	54
107	Removing the blinkers: moving beyond striatal dopamine in Parkinson's disease. Journal of Neurochemistry, 2013, 125, 639-641.	3.9	2
108	Angiogenin in Parkinson Disease Models: Role of Akt Phosphorylation and Evaluation of AAV-Mediated Angiogenin Expression in MPTP Treated Mice. PLoS ONE, 2013, 8, e56092.	2.5	29

#	Article	IF	CITATIONS
109	LRRK2 Inhibition Attenuates Microglial Inflammatory Responses. Journal of Neuroscience, 2012, 32, 1602-1611.	3.6	386
110	Cholinergic Dysfunction Alters Synaptic Integration between Thalamostriatal and Corticostriatal Inputs in DYT1 Dystonia. Journal of Neuroscience, 2012, 32, 11991-12004.	3.6	93
111	Unilateral subthalamic nucleus deep brain stimulation improves sleep quality in Parkinson's disease. Parkinsonism and Related Disorders, 2012, 18, 63-68.	2.2	59
112	The gamma chain subunit of Fc receptors is required for alpha-synuclein-induced pro-inflammatory signaling in microglia. Journal of Neuroinflammation, 2012, 9, 259.	7.2	89
113	CD4+ Regulatory and Effector/Memory T Cell Subsets Profile Motor Dysfunction in Parkinson's Disease. Journal of NeuroImmune Pharmacology, 2012, 7, 927-938.	4.1	255
114	Alteration of Striatal Dopaminergic Neurotransmission in a Mouse Model of DYT11 Myoclonus-Dystonia. PLoS ONE, 2012, 7, e33669.	2.5	35
115	Evaluation of TorsinA as a Target for Parkinson Disease Therapy in Mouse Models. PLoS ONE, 2012, 7, e50063.	2.5	4
116	Cholinergic dysregulation produced by selective inactivation of the dystonia-associated protein torsinA. Neurobiology of Disease, 2012, 47, 416-427.	4.4	71
117	Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nature Genetics, 2011, 43, 699-705.	21.4	502
118	The Parkinson Progression Marker Initiative (PPMI). Progress in Neurobiology, 2011, 95, 629-635.	5.7	1,278
119	Altered Dendritic Morphology of Purkinje cells in Dyt1 ΔGAG Knock-In and Purkinje Cell-Specific Dyt1 Conditional Knockout Mice. PLoS ONE, 2011, 6, e18357.	2.5	65
120	Motor Deficits and Decreased Striatal Dopamine Receptor 2 Binding Activity in the Striatum-Specific Dyt1 Conditional Knockout Mice. PLoS ONE, 2011, 6, e24539.	2.5	64
121	A neuroprotective role for angiogenin in models of Parkinson's disease. Journal of Neurochemistry, 2011, 116, 334-341.	3.9	62
122	Update on the pathology of dystonia. Neurobiology of Disease, 2011, 42, 148-151.	4.4	92
123	Parkinson's disease, primates, and gene therapy: Vive la différence?. Movement Disorders, 2011, 26, 2-3.	3.9	35
124	Developmental Profile of the Aberrant Dopamine D2 Receptor Response in Striatal Cholinergic Interneurons in DYT1 Dystonia. PLoS ONE, 2011, 6, e24261.	2.5	77
125	Target validation: the Parkinson disease perspective. DMM Disease Models and Mechanisms, 2010, 3, 259-262.	2.4	5
126	VPS41, a protein involved in lysosomal trafficking, is protective in Caenorhabditis elegans and mammalian cellular models of Parkinson's disease. Neurobiology of Disease, 2010, 37, 330-338.	4.4	70

#	Article	IF	CITATIONS
127	Dopamine D2 receptor dysfunction is rescued by adenosine A2A receptor antagonism in a model of DYT1 dystonia. Neurobiology of Disease, 2010, 38, 434-445.	4.4	92
128	Fcl ³ receptors are required for NF-lºB signaling, microglial activation and dopaminergic neurodegeneration in an AAV-synuclein mouse model of Parkinson's disease. Molecular Neurodegeneration, 2010, 5, 42.	10.8	74
129	Function of dopamine transporter is compromised in DYT1 transgenic animal model <i>in vivo</i> . Journal of Neurochemistry, 2010, 113, 228-235.	3.9	43
130	Transduction of Brain Dopamine Neurons by Adenoviral Vectors Is Modulated by CAR Expression: Rationale for Tropism Modified Vectors in PD Gene Therapy. PLoS ONE, 2010, 5, e12672.	2.5	17
131	Differential neuroprotective effects of 14-3-3 proteins in models of Parkinson's disease. Cell Death and Disease, 2010, 1, e2-e2.	6.3	120
132	Levodopa-Induced Dyskinesia Is Associated with Increased Thyrotropin Releasing Hormone in the Dorsal Striatum of Hemi-Parkinsonian Rats. PLoS ONE, 2010, 5, e13861.	2.5	12
133	Investigating Bacterial Sources of Toxicity as an Environmental Contributor to Dopaminergic Neurodegeneration. PLoS ONE, 2009, 4, e7227.	2.5	45
134	Dysregulation of CalDAG-GEFI and CalDAG-GEFII predicts the severity of motor side-effects induced by anti-parkinsonian therapy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2892-2896.	7.1	60
135	Racial Differences in Parkinson's Disease Medication Use in the Reasons for Geographic and Racial Differences in Stroke Cohort: A Cross-Sectional Study. Neuroepidemiology, 2009, 33, 329-334.	2.3	22
136	Impairment of bidirectional synaptic plasticity in the striatum of a mouse model of DYT1 dystonia: role of endogenous acetylcholine. Brain, 2009, 132, 2336-2349.	7.6	197
137	Impaired striatal D2 receptor function leads to enhanced GABA transmission in a mouse model of DYT1 dystonia. Neurobiology of Disease, 2009, 34, 133-145.	4.4	80
138	Monitoring Motor Fluctuations in Patients With Parkinson's Disease Using Wearable Sensors. IEEE Transactions on Information Technology in Biomedicine, 2009, 13, 864-873.	3.2	477
139	Targets for neuroprotection in Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 676-687.	3.8	147
140	O.045 Mechanisms of dystonia. Parkinsonism and Related Disorders, 2009, 15, S12.	2.2	0
141	Torsion Dystonia. , 2009, , 1029-1034.		0
142	The pathophysiological basis of dystonias. Nature Reviews Neuroscience, 2008, 9, 222-234.	10.2	420
143	Striatal histone modifications in models of levodopaâ€induced dyskinesia. Journal of Neurochemistry, 2008, 106, 486-494.	3.9	92
144	Differential synaptic plasticity of the corticostriatal and thalamostriatal systems in an MPTPâ€ŧreated monkey model of parkinsonism. European Journal of Neuroscience, 2008, 27, 1647-1658.	2.6	97

#	Article	IF	CITATIONS
145	Transcriptional dysregulation in a transgenic model of Parkinson disease. Neurobiology of Disease, 2008, 29, 515-528.	4.4	62
146	Lysosomal enzyme cathepsin D protects against alpha-synuclein aggregation and toxicity. Molecular Brain, 2008, 1, 17.	2.6	212
147	Biochemical Fractionation of Brain Tissue for Studies of Receptor Distribution and Trafficking. Current Protocols in Neuroscience, 2008, 42, Unit 1.16.	2.6	78
148	Design of clinical trials of gene therapy in Parkinson disease. Experimental Neurology, 2008, 209, 41-47.	4.1	14
149	Processing Wearable Sensor Data to Optimize Deep-Brain Stimulation. IEEE Pervasive Computing, 2008, 7, 56-61.	1.3	9
150	Using wearable sensors to predict the severity of symptoms and motor complications in late stage Parkinson's Disease. , 2008, 2008, 3686-9.		21
151	Targeted Overexpression of Human α-Synuclein Triggers Microglial Activation and an Adaptive Immune Response in a Mouse Model of Parkinson Disease. Journal of Neuropathology and Experimental Neurology, 2008, 67, 1149-1158.	1.7	295
152	Molecular markers of early Parkinson's disease based on gene expression in blood. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 955-960.	7.1	462
153	Sex Differences in Parkinson's Disease. , 2007, , 455-464.		0
154	Pharmacological inhibition of PARP-1 reduces α-synuclein- and MPP+-induced cytotoxicity in Parkinson's disease in vitro models. Biochemical and Biophysical Research Communications, 2007, 357, 596-602.	2.1	67
155	Angiotensin II protects against α-synuclein toxicity and reduces protein aggregation in vitro. Biochemical and Biophysical Research Communications, 2007, 363, 846-851.	2.1	25
156	Dopaminergic neuron loss and up-regulation of chaperone protein mRNA induced by targeted over-expression of alpha-synuclein in mouse substantia nigra. Journal of Neurochemistry, 2007, 100, 070214184024010-???.	3.9	164
157	Dopamine release is impaired in a mouse model of DYT1 dystonia. Journal of Neurochemistry, 2007, 102, 783-788.	3.9	111
158	Effects of gender on nigral gene expression and parkinson disease. Neurobiology of Disease, 2007, 26, 606-614.	4.4	206
159	Using Wearable Sensors to Enhance DBS Parameter Adjustment for Parkinson's Disease Patients Through Measures of Motor Response. , 2006, , .		4
160	Huntingtin inclusions do not down-regulate specific genes in the R6/2 Huntington's disease mouse. European Journal of Neuroscience, 2006, 23, 3171-3175.	2.6	25
161	No alteration in tau exon 10 alternative splicing in tangle-bearing neurons of the Alzheimer's disease brain. Acta Neuropathologica, 2006, 112, 439-449.	7.7	41
162	Altered responses to dopaminergic D2 receptor activation and N-type calcium currents in striatal cholinergic interneurons in a mouse model of DYT1 dystonia. Neurobiology of Disease, 2006, 24, 318-325.	4.4	150

#	Article	IF	CITATIONS
163	Dopamine D ₁ Activation Potentiates Striatal NMDA Receptors by Tyrosine Phosphorylation-Dependent Subunit Trafficking. Journal of Neuroscience, 2006, 26, 4690-4700.	3.6	193
164	Alpha-Synuclein and Chaperones in Dementia With Lewy Bodies. Journal of Neuropathology and Experimental Neurology, 2005, 64, 1058-1066.	1.7	55
165	Applications of Laser Capture Microdissection in the Study of Neurodegenerative Disease. Archives of Neurology, 2005, 62, 203.	4.5	22
166	Transcriptional dysregulation in striatal projection- and interneurons in a mouse model of Huntington's disease: neuronal selectivity and potential neuroprotective role of HAP1. Human Molecular Genetics, 2005, 14, 179-189.	2.9	98
167	Impaired Motor Learning in Mice Expressing TorsinA with the DYT1 Dystonia Mutation. Journal of Neuroscience, 2005, 25, 5351-5355.	3.6	134
168	Somatic mitochondrial DNA mutations in single neurons and glia. Neurobiology of Aging, 2005, 26, 1343-1355.	3.1	77
169	Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson's disease. Neuropharmacology, 2005, 48, 503-516.	4.1	175
170	DYT1 Transgenic Mouse. , 2005, , 287-292.		1
171	Neurogenetics Of Dystonia And Paroxysmal Dyskinesias. Neurological Disease and Therapy, 2005, , 396-419.	0.0	0
172	Data mining techniques to detect motor fluctuations in Parkinson's disease. , 2004, 2004, 4766-9.		51
173	L-Type Ca ²⁺ Channels Mediate Adaptation of Extracellular Signal-Regulated Kinase 1/2 Phosphorylation in the Ventral Tegmental Area after Chronic Amphetamine Treatment. Journal of Neuroscience, 2004, 24, 7464-7476.	3.6	53
174	Dopamine D1-Dependent Trafficking of Striatal <i>N-</i> Methyl-d-aspartate Glutamate Receptors Requires Fyn Protein Tyrosine Kinase but Not DARPP-32. Molecular Pharmacology, 2004, 65, 121-129.	2.3	168
175	NMDA-R1 antisense oligodeoxynucleotides modify formalin-induced nociception and spinal c-Fos expression in rat spinal cord. Pharmacology Biochemistry and Behavior, 2004, 79, 183-188.	2.9	20
176	Rationale for and use of NMDA receptor antagonists in Parkinson's disease. , 2004, 102, 155-174.		204
177	Changes in the expression of the NR2B subunit during aging in macaque monkeys. Neurobiology of Aging, 2004, 25, 201-208.	3.1	48
178	Neuroprotective Strategies for Parkinsons Disease. Current Neuropharmacology, 2004, 2, 309-322.	2.9	0
179	Dopamine transmission in DYT1 dystonia. Advances in Neurology, 2004, 94, 53-60.	0.8	26
180	Predicting the potential of wearable technology. IEEE Engineering in Medicine and Biology Magazine, 2003, 22, 23-27.	0.8	91

#	Article	IF	CITATIONS
181	Distribution and ultrastructural localization of torsinA immunoreactivity in the human brain. Brain Research, 2003, 986, 12-21.	2.2	60
182	Subcellular segregation of distinct heteromeric NMDA glutamate receptors in the striatum. Journal of Neurochemistry, 2003, 85, 935-943.	3.9	81
183	Complex alteration of NMDA receptors in transgenic Huntington's disease mouse brain: analysis of mRNA and protein expression, plasma membrane association, interacting proteins, and phosphorylation. Neurobiology of Disease, 2003, 14, 624-636.	4.4	92
184	TorsinA protein and neuropathology in early onset generalized dystonia with GAG deletion. Neurobiology of Disease, 2003, 12, 11-24.	4.4	148
185	Introduction: Adenosine A _{2A} receptor modulation of motor systems for symptomatic therapy in Parkinson's disease. Neurology, 2003, 61, S30-1.	1.1	2
186	Wearable technology's applications in Parkinson's disease. IEEE Engineering in Medicine and Biology Magazine, 2003, 22, 25-6.	0.8	0
187	Sp1 and TAFII130 Transcriptional Activity Disrupted in Early Huntington's Disease. Science, 2002, 296, 2238-2243.	12.6	638
188	Tyrosine phosphorylation of the metabotropic glutamate receptor mGluR5 in striatal neurons. Neuropharmacology, 2002, 43, 161-173.	4.1	32
189	Molecular cloning and expression of rat torsinA in the normal and genetically dystonic (dt) rat. Molecular Brain Research, 2002, 101, 132-135.	2.3	16
190	Inherited movement disorders. Neurologic Clinics, 2002, 20, 759-778.	1.8	7
191	Identification of Nitric Oxide Synthase Neurons for Laser Capture Microdissection and mRNA Quantification. BioTechniques, 2002, 33, 1274-1283.	1.8	18
192	Expression and activity of antioxidants in the brain in progressive supranuclear palsy. Brain Research, 2002, 930, 170-181.	2.2	38
193	Evidence for Oxidative Stress in the Subthalamic Nucleus in Progressive Supranuclear Palsy. Journal of Neurochemistry, 2002, 73, 881-884.	3.9	60
194	Gene expression profiling in the post-mortem human brain — no cause for dismay. Journal of Chemical Neuroanatomy, 2001, 22, 79-94.	2.1	144
195	Dystonia and its disorders. Neurologic Clinics, 2001, 19, 681-705.	1.8	44
196	Dopamine D1 Receptor-Dependent Trafficking of Striatal NMDA Glutamate Receptors to the Postsynaptic Membrane. Journal of Neuroscience, 2001, 21, 5546-5558.	3.6	349
197	Frontal Lobe Dysfunction in Progressive Supranuclear Palsy. Journal of Neurochemistry, 2001, 74, 878-881.	3.9	95
198	Expression of NMDA receptor subunit mRNAs in neurochemically identified projection and		95

interneurons in the human striatum. , 2000, 419, 407-421.

#	Article	IF	CITATIONS
199	Localization of dopaminergic markers in the human subthalamic nucleus. Journal of Comparative Neurology, 2000, 421, 247-255.	1.6	45
200	Research goals in progressive supranuclear palsy. Movement Disorders, 2000, 15, 446-458.	3.9	29
201	Selective attenuation of psychostimulant-induced behavioral responses in mice lacking A2A adenosine receptors. Neuroscience, 2000, 97, 195-204.	2.3	121
202	α-Actinin-2 in rat striatum: localization and interaction with NMDA glutamate receptor subunits. Molecular Brain Research, 2000, 79, 77-87.	2.3	53
203	Localization of Adenosine Receptors in Brain and Periphery. , 2000, , 17-30.		2
204	Association of AMPA Receptors with a Subset of Glutamate Receptor-Interacting Protein <i>In Vivo</i> . Journal of Neuroscience, 1999, 19, 6528-6537.	3.6	161
205	Distribution of Group III mGluRs in Rat Basal Ganglia with Subtype-Specific Antibodies. Annals of the New York Academy of Sciences, 1999, 868, 531-534.	3.8	53
206	Distribution of the mRNAs encoding torsinA and torsinB in the normal adult human brain. Annals of Neurology, 1999, 46, 761-769.	5.3	135
207	Immunohistochemical localization of subtype 4a metabotropic glutamate receptors in the rat and mouse basal ganglia. Journal of Comparative Neurology, 1999, 407, 33-46.	1.6	152
208	Localization of alternatively spliced NMDAR1 glutamate receptor isoforms in rat striatal neurons. , 1999, 415, 204-217.		25
209	Localization of metabotropic glutamate receptor 7 mRNA and mGluR7a protein in the rat basal ganglia. , 1999, 415, 266-284.		138
210	Immunohistochemical localization of N-methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor subunits in the substantia nigra pars compacta of the rat. Neuroscience, 1999, 89, 209-220.	2.3	50
211	Expression of NMDA glutamate receptor subunit mRNAs in neurochemically identified projection and interneurons in the striatum of the rat. Molecular Brain Research, 1999, 64, 11-23.	2.3	131
212	NEUROPROTECTIVE THERAPIES. Medical Clinics of North America, 1999, 83, 509-523.	2.5	30
213	A _{2A} Adenosine Receptor Deficiency Attenuates Brain Injury Induced by Transient Focal Ischemia in Mice. Journal of Neuroscience, 1999, 19, 9192-9200.	3.6	512
214	Localization of metabotropic glutamate receptor 7 mRNA and mGluR7a protein in the rat basal ganglia. Journal of Comparative Neurology, 1999, 415, 266-284.	1.6	1
215	Expression of the early-onset torsion dystonia gene (DYT1) in human brain. Annals of Neurology, 1998, 43, 669-673.	5.3	111
216	Immunohistochemical localization of metabotropic glutamate receptors mGluR1a and mGluR2/3 in the rat basal ganglia. , 1998, 390, 5-19.		220

#	Article	IF	CITATIONS
217	Expression of N-Methyl-D-Aspartate receptor subunit mRNAs in the human brain: Striatum and globus pallidus. Journal of Comparative Neurology, 1998, 390, 63-74.	1.6	60
218	Expression of N-Methyl-D-Aspartate receptor subunit mRNAs in the human brain: Hippocampus and cortex. , 1998, 390, 75-90.		120
219	Expression of N-Methyl-D-Aspartate receptor subunit mRNA in the human brain: Mesencephalic dopaminergic neurons. , 1998, 390, 91-101.		38
220	Differential localization of the mRNAs for the pertussis toxin insensitive G-protein alpha sub-units Gq, G11, and Gz in the rat brain, and regulation of their expression after striatal deafferentation. Molecular Brain Research, 1998, 54, 298-310.	2.3	23
221	Expression of metabotropic glutamate receptor 1 isoforms in the substantia nigra pars compacta of the rat. Neuroscience, 1998, 86, 783-798.	2.3	51
222	Simultaneous isotopic and nonisotopic in situ hybridization histochemistry with cRNA probes. Brain Research Protocols, 1998, 3, 22-32.	1.6	28
223	NMDAR1 Glutamate Receptor Subunit Isoforms in Neostriatal, Neocortical, and Hippocampal Nitric Oxide Synthase Neurons. Journal of Neuroscience, 1998, 18, 1725-1734.	3.6	71
224	Immunohistochemical localization of metabotropic glutamate receptors mGluR1a and mGluR2/3 in the rat basal ganglia. Journal of Comparative Neurology, 1998, 390, 5-19.	1.6	7
225	Huntingtin Immunoreactivity in the Rat Neostriatum: Differential Accumulation in Projection and Interneurons. Experimental Neurology, 1997, 144, 239-247.	4.1	55
226	Cellular Distribution of NMDA Glutamate Receptor Subunit mRNAs in the Human Cerebellum. Neurobiology of Disease, 1997, 4, 35-46.	4.4	25
227	Expression of group one metabotropic glutamate receptor subunit mRNAs in neurochemically identified neurons in the rat neostriatum, neocortex, and hippocampus. Molecular Brain Research, 1997, 48, 259-269.	2.3	167
228	N-Acetylaspartylglutamate (NAAG) protects against rat striatal quinolinic acid lesions in vivo. Neuroscience Letters, 1997, 236, 91-94.	2.1	34
229	Differential expression of kainate receptors in the basal ganglia of the developing and adult rat brain. Brain Research, 1997, 768, 215-223.	2.2	54
230	Expression of N-methyl- d-aspartate glutamate receptor subunits in the prefrontal cortex of the rat. Neuroscience, 1996, 73, 417-427.	2.3	42
231	Metabotropic glutamate receptors modulate striatal quinolinic acid toxicity. Neuropharmacology, 1996, 35, A22.	4.1	Ο
232	Immunohistochemical localization of metabotropic glutamate receptors (mGluRs) in the rat basal ganglia. Neuropharmacology, 1996, 35, A30.	4.1	1
233	Expression of NMDAR2D glutamate receptor subunit mRNA in neurochemically identified interneurons in the rat neostriatum, neocortex and hippocampus. Molecular Brain Research, 1996, 42, 89-102.	2.3	161
234	Differential expression of mGluR5 metabotropic glutamate receptor mRNA by rat striatal neurons. Journal of Comparative Neurology, 1995, 354, 241-252.	1.6	178

#	Article	IF	CITATIONS
235	NMDA receptor subunit mRNA expression by projection neurons and interneurons in rat striatum. Journal of Neuroscience, 1995, 15, 5297-5307.	3.6	303
236	Metabotropic receptors in excitotoxicity: (S)-4-carboxy-3-hydroxyphenylglycine ((S)-4C3HPG) protects against rat striatal quinolinic acid lesions. Neuroscience Letters, 1995, 202, 109-112.	2.1	47
237	DNA Fragmentation and Immediate Early Gene Expression in Rat Striatum Following Quinolinic Acid Administration. Experimental Neurology, 1995, 133, 207-214.	4.1	20
238	Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. Journal of Neuroscience, 1994, 14, 3005-3018.	3.6	489
239	Organization of N-methyl-D-aspartate glutamate receptor gene expression in the basal ganglia of the rat. Journal of Comparative Neurology, 1994, 343, 1-16.	1.6	358
240	Glutamate receptor expression in rat striatum: Effect of deafferentation. Brain Research, 1994, 647, 209-219.	2.2	69
241	Metabotropic glutamate receptors are differentially regulated during development. Neuroscience, 1994, 61, 481-495.	2.3	224
242	Differential expression of metabotropic glutamate receptors in the hippocampus and entorhinal cortex of the rat. Molecular Brain Research, 1994, 21, 283-292.	2.3	122
243	Alternatively spliced isoforms of the NMDAR1 glutamate receptor subunit: Differential expression in the basal ganglia of the rat. Neuroscience Letters, 1993, 152, 161-164.	2.1	59
244	Magnetic Resonance Angiography in the Evaluation of Dural Carotid avernous Fistulas. Journal of Neuroimaging, 1992, 2, 208-211.	2.0	0
245	Expression of the gene for preproatriopeptin in the central nervous system of the rat. Molecular Brain Research, 1988, 4, 7-13.	2.3	30
246	Origin of the atriopeptin-like immunoreactive innervation of the paraventricular nucleus of the hypothalamus. Journal of Neuroscience, 1988, 8, 1940-1950.	3.6	47
247	Role of Atriopeptin in Central Cardiovascular Control. , 1988, , 151-162.		0
248	Inhibition of the firing of vasopressin neurons by atriopeptin. Nature, 1987, 329, 151-153.	27.8	113
249	Colocalization of atriopeptin-like immunoreactivity with choline acetyltransferase-and substance P-like immunoreactivity in the pedunculopontine and laterodorsal tegmental nuclei in the rat. Brain Research, 1986, 382, 163-168.	2.2	95
250	Opioid peptide immunoreactivity in spinal and trigeminal dorsal horn neurons projecting to the parabrachial nucleus in the rat. Journal of Neuroscience, 1986, 6, 1220-1226.	3.6	117
251	Organization of atriopeptin-like immunoreactive neurons in the central nervous system of the rat. Journal of Comparative Neurology, 1986, 253, 315-341.	1.6	187
252	Spinal and trigeminal dorsal horn projections to the parabrachial nucleus in the rat. Journal of Comparative Neurology, 1985, 240, 153-160.	1.6	381

8

#	Article	IF	CITATIONS
253	Atriopeptin: potent hormone and potential neuromediator. Trends in Neurosciences, 1985, 8, 509-511.	8.6	44

Advanced Analysis of Wearable Sensor Data to Adjust Medication Intake in Patients with Parkinson?s Disease., 0, , .