Hai Jun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8580113/publications.pdf Version: 2024-02-01

Ηλι Ιυνι Υλνις

#	Article	IF	CITATIONS
1	Anti-fouling and protein separation of PVDF-g-PMAA@MnO2 filtration membrane with in-situ grown MnO2 nanorods. Chemosphere, 2022, 286, 131756.	4.2	13
2	Chemical cleaning reagent of sodium hypochlorite eroding polyvinylidene fluoride ultrafiltration membranes: Aging pathway, performance decay and molecular mechanism. Journal of Membrane Science, 2021, 625, 119141.	4.1	17
3	Antifouling Membranes Prepared from Polyethersulfone Grafted with Poly(ethylene glycol) Methacrylate by Radiation-Induced Copolymerization in Homogeneous Solution. ACS Omega, 2020, 5, 27094-27102.	1.6	15
4	Uniform, Anticorrosive, and Antiabrasive Coatings on Metallic Surfaces for Cation–Metal and Cationâ ''Ï€ Interactions. ACS Applied Materials & Interfaces, 2020, 12, 38638-38646.	4.0	13
5	Unexpected large impact of small charges on surface frictions with similar wetting properties. Communications Chemistry, 2020, 3, .	2.0	11
6	Controlling the Coffee Ring Effect on Graphene and Polymer by Cations*. Chinese Physics Letters, 2020, 37, 028103.	1.3	13
7	Dahliaâ€liked Carbon Nanohorns Decorated Graphene/Polyaniline Nanocomposite and Its Derived Nitrogenâ€doped Carbon for Highâ€performance Supercapacitor. ChemistrySelect, 2019, 4, 7270-7277.	0.7	4
8	Polyaniline-modified renewable biocarbon composites as an efficient hybrid electrode for supercapacitors. lonics, 2019, 25, 5459-5472.	1.2	5
9	Hierarchical Biocarbons with Controlled Micropores and Mesopores Derived from Kapok Fruit Peels for High-Performance Supercapacitor Electrodes. ACS Omega, 2019, 4, 5991-5999.	1.6	19
10	Effects of Alkaline Cleaning on the Conversion and Transformation of Functional Groups on Ion-Exchange Membranes in Polymer-Flooding Wastewater Treatment: Desalination Performance, Fouling Behavior, and Mechanism. Environmental Science & Technology, 2019, 53, 14430-14440.	4.6	20
11	Chemical cleaning of ultrafiltration membranes for polymer-flooding wastewater treatment: Efficiency and molecular mechanisms. Journal of Membrane Science, 2018, 545, 348-357.	4.1	32
12	pH-sensitive microfiltration membrane prepared from polyethersulfone grafted with poly(itaconic) Tj ETQq0 0 0 2018, 78, 602-610.	rgBT /Ove 1.2	rlock 10 Tf 50 11
13	An infrared spectroscopy study of PES PVP blend and PES-g-PVP copolymer. Polymer Testing, 2017, 59, 212-219.	2.3	39
14	pH and thermal-dependent ultrafiltration membranes prepared from poly (methacrylic acid) grafted onto polyethersulfone synthesized by simultaneous irradiation in homogenous phase. Journal of Membrane Science, 2017, 543, 335-341.	4.1	24
15	Effect of water molecules on nanoscale wetting behaviour of molecular ethanol on hydroxylated SiO ₂ substrate. Molecular Simulation, 2017, 43, 1377-1384.	0.9	9
16	Porous cellulose diacetate-SiO 2 composite coating on polyethylene separator for high-performance lithium-ion battery. Carbohydrate Polymers, 2016, 147, 517-524.	5.1	73
17	Force Drift in Force Mode Dip-Pen Nanolithography. Journal of Nanoscience and Nanotechnology, 2016, 16, 7030-7036.	0.9	0
18	Dissolution of Sessile Microdroplets of Electrolyte and Graphene Oxide Solutions in an Ouzo System. Langmuir, 2016, 32, 10296-10304.	1.6	6

Hai Jun Yang

#	Article	IF	CITATIONS
19	Molecular Mechanisms of Ultrafiltration Membrane Fouling in Polymer-Flooding Wastewater Treatment: Role of Ions in Polymeric Fouling. Environmental Science & Technology, 2016, 50, 1393-1402.	4.6	52
20	Tailoring graphene oxide assemblies by pinning on the contact line of a dissolving microdroplet. Soft Matter, 2015, 11, 8479-8483.	1.2	3
21	Preparation and application of porous nitrogen-doped graphene obtained by co-pyrolysis of lignosulfonate and graphene oxide. Bioresource Technology, 2015, 176, 106-111.	4.8	51
22	Mechanism of force mode dip-pen nanolithography. Journal of Applied Physics, 2014, 115, 174314.	1,1	0
23	Surfactant-mediated formation of polymeric microlenses from interfacial microdroplets. Soft Matter, 2014, 10, 957-964.	1.2	22
24	Analysis of anion exchange membrane fouling mechanism caused by anion polyacrylamide in electrodialysis. Desalination, 2014, 346, 46-53.	4.0	74
25	Controlling the assembly of graphene oxide by an electrolyte-assisted approach. Nanoscale, 2013, 5, 6458.	2.8	10
26	Study of the Structure and Electrical Properties of Chemically Reduced Graphene/Polyvinyl Alcohol Composite Films. Journal of Nanoscience and Nanotechnology, 2013, 13, 1752-1758.	0.9	3
27	From transient nanodroplets to permanent nanolenses. Soft Matter, 2012, 8, 4314.	1.2	52
28	Effects of Surfactants on the Formation and the Stability of Interfacial Nanobubbles. Langmuir, 2012, 28, 10471-10477.	1.6	77
29	Assembling of graphene oxide in an isolated dissolving droplet. Soft Matter, 2012, 8, 11249.	1.2	15
30	Surface modification of ultraâ€flat polydimethylsiloxane by UVâ€grafted poly(acrylic acid) brushes. Journal of Applied Polymer Science, 2012, 123, 2266-2271.	1.3	4
31	Fabrication and application of high quality poly(dimethylsiloxane) stamps by gamma ray irradiation. Journal of Materials Chemistry, 2011, 21, 4279.	6.7	10
32	Reducing Graphene Oxide via Hydroxylamine: A Simple and Efficient Route to Graphene. Journal of Physical Chemistry C, 2011, 115, 11957-11961.	1.5	304
33	Force mode dip-pen nanolithography on soft polydimethylsiloxane surface. Applied Physics Letters, 2011, 98, 233105.	1.5	5
34	Homogenous Grafted Poly(acrylic acid) Brushes on Ultra-flat Polydimethlysiloxane (PDMS) Films by UV Irradiation. Nano Biomedicine and Engineering, 2011, 3, .	0.3	6
35	Promoting Effect of Layered Titanium Phosphate on the Electrochemical and Photovoltaic Performance of Dye-Sensitized Solar Cells. Nanoscale Research Letters, 2010, 5, 1313-1319.	3.1	5
36	Improved dye-sensitized solar cells by composite ionic liquid electrolyte incorporating layered titanium phosphate. Solar Energy, 2010, 84, 854-859.	2.9	16

Hai Jun Yang

#	Article	IF	CITATIONS
37	Graphene Oxide as a Matrix for Enzyme Immobilization. Langmuir, 2010, 26, 6083-6085.	1.6	498
38	Reduction of graphene oxide via <scp>l</scp> -ascorbic acid. Chemical Communications, 2010, 46, 1112-1114.	2.2	2,098
39	VISUALIZATION EX SITU OF SINGLE DNA MOLECULES INCUBATION: A FIRST STEP FOR QUANTITATIVE ANALYSIS ON MULTI-SITE DEGRADATION AND ENZYMATIC KINETICS. Surface Review and Letters, 2009, 16, 79-85.	0.5	1
40	DISPERSION AND FIXATION OF ADENO-ASSOCIATED VIRUS WITH GLUTARALDEHYDE FOR AFM STUDIES. Surface Review and Letters, 2008, 15, 595-598.	0.5	1
41	ORGANIC SOLVENT-ASSISTED TRANSFER PRINTING ON HYDROPHOBIC POLYMER SUBSTRATE WITH HIGH EFFICIENCY. Surface Review and Letters, 2008, 15, 763-768.	0.5	4
42	INVESTIGATION ON THE MORPHOLOGY OF PRECIPITATED CHEMICALS FROM TE BUFFER ON SOLID SUBSTRATES. Surface Review and Letters, 2007, 14, 1121-1128.	0.5	6
43	Glycerol facilitates the disaggregation of recombinant adeno-associated virus serotype 2 on mica surface. Colloids and Surfaces B: Biointerfaces, 2007, 60, 264-267.	2.5	4