
Isabel F Amaral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8579909/publications.pdf Version: 2024-02-01

ISABEL F AMADAL

#	Article	IF	CITATIONS
1	Laminin-Inspired Cell-Instructive Microenvironments for Neural Stem Cells. Biomacromolecules, 2020, 21, 276-293.	2.6	40
2	Conjugation of the T1 sequence from CCN1 to fibrin hydrogels for therapeutic vascularization. Materials Science and Engineering C, 2019, 104, 109847.	3.8	12
3	Engineering hydrogels with affinity-bound laminin as 3D neural stem cell culture systems. Biomaterials Science, 2019, 7, 5338-5349.	2.6	35
4	An affinity-based approach to engineer laminin-presenting cell instructive microenvironments. Biomaterials, 2019, 192, 601-611.	5.7	12
5	Delivery of Antisense Oligonucleotides Mediated by a Hydrogel System: In Vitro and In Vivo Application in the Context of Spinal Cord Injury. Methods in Molecular Biology, 2019, 2036, 205-219.	0.4	0
6	Hydrogel-Assisted Antisense LNA Gapmer Delivery for In Situ Gene Silencing in Spinal Cord Injury. Molecular Therapy - Nucleic Acids, 2018, 11, 393-406.	2.3	13
7	Synthetic matrix enhances transplanted satellite cell engraftment in dystrophic and aged skeletal muscle with comorbid trauma. Science Advances, 2018, 4, eaar4008.	4.7	51
8	Rotary orbital suspension culture of embryonic stem cell-derived neural stem/progenitor cells: impact of hydrodynamic culture on aggregate yield, morphology and cell phenotype. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2227-2240.	1.3	5
9	Three-dimensional culture of single embryonic stem-derived neural/stem progenitor cells in fibrin hydrogels: neuronal network formation and matrix remodelling. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3494-3507.	1.3	28
10	Fibrin functionalization with synthetic adhesive ligands interacting with α6β1 integrin receptor enhance neurite outgrowth of embryonic stem cell-derived neural stem/progenitors. Acta Biomaterialia, 2017, 59, 243-256.	4.1	20
11	Development of an immunomodulatory biomaterial: Using resolvin D1 to modulate inflammation. Biomaterials, 2015, 53, 566-573.	5.7	73
12	Modulation of the inflammatory response to chitosan through M2 macrophage polarization using pro-resolution mediators. Biomaterials, 2015, 37, 116-123.	5.7	122
13	Biomimetic Synthetic Self-Assembled Hydrogels for Cell Transplantation. Current Topics in Medicinal Chemistry, 2015, 15, 1209-1226.	1.0	15
14	Modulation of stability and mucoadhesive properties of chitosan microspheres for therapeutic gastric application. International Journal of Pharmaceutics, 2013, 454, 116-124.	2.6	53
15	Macrophage polarization following chitosan implantation. Biomaterials, 2013, 34, 9952-9959.	5.7	121
16	Endothelialization of chitosan porous conduits via immobilization of a recombinant fibronectin fragment (rhFNIII7–10). Acta Biomaterialia, 2013, 9, 5643-5652.	4.1	18
17	Kinetics and isotherm of fibronectin adsorption to three-dimensional porous chitosan scaffolds explored by125I-radiolabelling. Biomatter, 2013, 3, e24791.	2.6	4
18	Automatic Quantification of Cell Outgrowth from Neurospheres. Lecture Notes in Computer Science, 2013, , 141-148.	1.0	4

ISABEL F AMARAL

#	Article	IF	CITATIONS
19	Evaluation of the effect of the degree of acetylation on the inflammatory response to 3D porous chitosan scaffolds. Journal of Biomedical Materials Research - Part A, 2010, 93A, 20-28.	2.1	43
20	Engineering Endochondral Bone: <i>In Vitro</i> Studies. Tissue Engineering - Part A, 2009, 15, 625-634.	1.6	47
21	Engineering Endochondral Bone: <i>In Vivo</i> Studies. Tissue Engineering - Part A, 2009, 15, 635-643.	1.6	77
22	Fibronectin-mediated endothelialisation of chitosan porous matrices. Biomaterials, 2009, 30, 5465-5475.	5.7	41
23	Surface characterization and cell response of a PLA/CaP glass biodegradable composite material. Journal of Biomedical Materials Research - Part A, 2008, 85A, 477-486.	2.1	46
24	Attachment, spreading and short-term proliferation of human osteoblastic cells cultured on chitosan films with different degrees of acetylation. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 469-485.	1.9	75
25	Functionalization of chitosan membranes through phosphorylation: Atomic force microscopy, wettability, and cytotoxicity studies. Journal of Applied Polymer Science, 2006, 102, 276-284.	1.3	25
26	Three-dimensional culture of human osteoblastic cells in chitosan sponges: The effect of the degree of acetylation. Journal of Biomedical Materials Research - Part A, 2006, 76A, 335-346.	2.1	64
27	Rat bone marrow stromal cell osteogenic differentiation and fibronectin adsorption on chitosan membranes: The effect of the degree of acetylation. Journal of Biomedical Materials Research - Part A, 2005, 75A, 387-397.	2.1	59
28	Chemical modification of chitosan by phosphorylation: an XPS, FT-IR and SEM study. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 1575-1593.	1.9	379