Carmen M Michan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8579783/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Viruses: Friends or foes. Microbial Biotechnology, 2022, 15, 88-90.	2.0	2
2	Monitoring COVIDâ€19 through SARSâ€CoVâ€2 quantification in wastewater: progress, challenges and prospects. Microbial Biotechnology, 2022, 15, 1719-1728.	2.0	23
3	Regulation and activity of CaTrk1, CaAcu1 and CaHak1, the three plasma membrane potassium transporters in Candida albicans. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183486.	1.4	7
4	Highâ€ŧhroughput molecular analyses of microbiomes as a tool to monitor the wellbeing of aquatic environments. Microbial Biotechnology, 2021, 14, 870-885.	2.0	21
5	Constructing a de novo transcriptome and a reference proteome for the bivalve Scrobicularia plana: Comparative analysis of different assembly strategies and proteomic analysis. Genomics, 2021, 113, 1543-1553.	1.3	5
6	The Potassium Transporter Hak1 in Candida Albicans, Regulation and Physiological Effects at Limiting Potassium and under Acidic Conditions. Journal of Fungi (Basel, Switzerland), 2021, 7, 362.	1.5	2
7	Metaâ€omic evaluation of bacterial microbial community structure and activity for the environmental assessment of soils: overcoming protein extraction pitfalls. Environmental Microbiology, 2021, 23, 4706-4725.	1.8	2
8	Bacteria, archae, fungi and viruses: it takes a community to eliminate waste. Microbial Biotechnology, 2020, 13, 892-894.	2.0	1
9	Biofiltration of butyric acid: Monitoring odor abatement and microbial communities. Environmental Research, 2020, 190, 110057.	3.7	6
10	Metal body burden and tissue oxidative status in the bivalve Venerupis decussata from Tunisian coastal lagoons. Marine Environmental Research, 2020, 159, 105000.	1.1	8
11	Trk1, the sole potassium-specific transporter in Candida glabrata, contributes to the proper functioning of various cell processes. World Journal of Microbiology and Biotechnology, 2019, 35, 124.	1.7	2
12	Overlapping responses between salt and oxidative stress in Debaryomyces hansenii. World Journal of Microbiology and Biotechnology, 2019, 35, 170.	1.7	17
13	Redox and global interconnected proteome changes in mice exposed to complex environmental hazards surrounding Doñana National Park. Environmental Pollution, 2019, 252, 427-439.	3.7	2
14	Paving the way for the production of secretory proteins by yeast cell factories. Microbial Biotechnology, 2019, 12, 1095-1096.	2.0	12
15	Alterations in oxidative responses and post-translational modification caused by p,p´-DDE in Mus spretus testes reveal Cys oxidation status in proteins related to cell-redox homeostasis and male fertility. Science of the Total Environment, 2018, 636, 656-669.	3.9	9
16	Debaryomyces hansenii Strains from Valle De Los Pedroches Iberian Dry Meat Products: Isolation, Identification, Characterization, and Selection for Starter Cultures. Journal of Microbiology and Biotechnology, 2017, 27, 1576-1585.	0.9	23
17	The halotolerant <i>Debaryomyces hansenii</i> , the Cinderella of nonâ€conventional yeasts. Yeast, 2016, 33, 523-533	0.8	59
18	iTRAQ analysis of hepatic proteins in free-living Mus spretus mice to assess the contamination status of areas surrounding Doñana National Park (SW Spain). Science of the Total Environment, 2015, 523, 16-27.	3.9	18

CARMEN M MICHAN

#	Article	IF	CITATIONS
19	Gut microbiota: in sickness and in health. Microbial Biotechnology, 2014, 7, 88-89.	2.0	5
20	Indispensable or toxic? The phosphate versus arsenate debate. Microbial Biotechnology, 2013, 6, 209-211.	2.0	4
21	Salt and oxidative stress tolerance in <i>Debaryomyces hansenii</i> and <i>Debaryomyces fabryi</i> . FEMS Yeast Research, 2013, 13, 180-188.	1.1	24
22	Explorative probes and biomarkers, chronic <i>Salmonella</i> infections and future vaccines. Microbial Biotechnology, 2012, 5, 1-4.	2.0	4
23	Evolution of antibiotic resistance, catabolic pathways and niche colonization. Microbial Biotechnology, 2012, 5, 452-454.	2.0	Ο
24	Induction of <i>Pseudomonas syringae</i> pv. <i>tomato</i> DC3000 MexAB-OprM Multidrug Efflux Pump by Flavonoids Is Mediated by the Repressor PmeR. Molecular Plant-Microbe Interactions, 2011, 24, 1207-1219.	1.4	59
25	Directed evolution, natural products for cancer chemotherapy, and microâ€biosensing robots. Microbial Biotechnology, 2011, 4, 314-317.	2.0	Ο
26	Cold is cool, the human microbiota and taking multiple SIPs. Microbial Biotechnology, 2011, 4, 554-557.	2.0	0
27	Metabolic engineering, new antibiotics and biofilm viscoelasticity. Microbial Biotechnology, 2010, 3, 10-14.	2.0	2
28	Sugar (ribose), spice (peroxidase) and all things nice (laccase hairâ€dyes). Microbial Biotechnology, 2010, 3, 131-133.	2.0	4
29	<i>Microbial Biotechnology</i> : biofuels, genotoxicity reporters and robust agroâ€ecosystems. Microbial Biotechnology, 2010, 3, 239-241.	2.0	2
30	Struggling to get a universal meningococcal vaccine and novel uses for bacterial toxins in cancer treatment. Microbial Biotechnology, 2010, 3, 359-361.	2.0	0
31	New molecular techniques for pathogen analysis, <i>in silico</i> determination of RND efflux pump substrate specificity, shotgun proteomic monitoring of bioremediation and yeast bioâ€applications. Microbial Biotechnology, 2010, 3, 624-627.	2.0	1
32	Twenty one important things you should know. Microbial Biotechnology, 2009, 2, 397-400.	2.0	0
33	New molecular tools for enhancing methane production, explaining thermodynamically limited lifestyles and other important biotechnological issues. Microbial Biotechnology, 2009, 2, 533-536.	2.0	17
34	The heat, drugs and knockout systems of <i>Microbial Biotechnology</i> . Microbial Biotechnology, 2009, 2, 598-600.	2.0	1
35	Growth phase-dependent variations in transcript profiles for thioredoxin- and glutathione-dependent redox systems followed by budding and hyphalCandida albicans cultures. FEMS Yeast Research, 2009, 9, 1078-1090.	1.1	28
36	Transcript copy number of genes for DNA repair and translesion synthesis in yeast: contribution of transcription rate and mRNA stability to the steady-state level of each mRNA along with growth in glucose-fermentative medium. DNA Repair, 2005, 4, 469-478.	1.3	7

#	Article	IF	CITATIONS
37	Absolute transcript levels of thioredoxin- and glutathione-dependent redox systems in Saccharomyces cerevisiae: response to stress and modulation with growth. Biochemical Journal, 2004, 383, 139-147.	1.7	37
38	SoxRS Down-Regulation of rob Transcription. Journal of Bacteriology, 2002, 184, 4733-4738.	1.0	31
39	Hydrogen Peroxide Activates the SoxRS Regulon In Vivo. Journal of Bacteriology, 2000, 182, 6842-6844.	1.0	74
40	DNA binding and DNA bending by the MelR transcription activator protein from Escherichia coli. Nucleic Acids Research, 1997, 25, 1685-1693.	6.5	35
41	In vivo construction of a hybrid pathway for metabolism of 4-nitrotoluene in Pseudomonas fluorescens. Journal of Bacteriology, 1997, 179, 3036-3038.	1.0	27
42	TheEscherichia coliMeIR transcription activator: production of a stable fragment containing the DNA-binding domain. Nucleic Acids Research, 1995, 23, 1518-1523.	6.5	21
43	The XylS/AraC family of regulators. Nucleic Acids Research, 1993, 21, 807-810.	6.5	181
44	XylS domain interactions can be deduced from intraallelic dominance in double mutants of Pseudomonas putida. Molecular Genetics and Genomics, 1992, 235, 406-412.	2.4	24
45	Signal-regulator interactions, genetic analysis of the effector binding site of xyls, the benzoate-activated positive regulator of Pseudomonas TOL plasmid meta-cleavage pathway operon. Journal of Molecular Biology, 1990, 211, 373-382.	2.0	92
46	Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. Journal of Bacteriology, 1989, 171, 6782-6790.	1.0	376