Muhammad Asgher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8579359/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation, 2008, 19, 771-783.	1.5	399
2	Immobilized ligninolytic enzymes: An innovative and environmental responsive technology to tackle dye-based industrial pollutants – A review. Science of the Total Environment, 2017, 576, 646-659.	3.9	321
3	Lignocellulose: A sustainable material to produce value-added products with a zero waste approach—A review. International Journal of Biological Macromolecules, 2017, 99, 308-318.	3.6	294
4	Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Research International, 2020, 137, 109625.	2.9	282
5	Multi-point enzyme immobilization, surface chemistry, and novel platforms: a paradigm shift in biocatalyst design. Critical Reviews in Biotechnology, 2019, 39, 202-219.	5.1	199
6	Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology. Journal of Molecular Catalysis B: Enzymatic, 2014, 101, 56-66.	1.8	195
7	Biotransformation of lignocellulosic materials into value-added products—A review. International Journal of Biological Macromolecules, 2017, 98, 447-458.	3.6	183
8	Chitosan beads immobilized manganese peroxidase catalytic potential for detoxification and decolorization of textile effluent. International Journal of Biological Macromolecules, 2016, 89, 181-189.	3.6	134
9	Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics. International Journal of Biological Macromolecules, 2016, 91, 1161-1169.	3.6	131
10	Dye decolorization and detoxification potential of Ca-alginate beads immobilized manganese peroxidase. BMC Biotechnology, 2015, 15, 111.	1.7	113
11	Enzyme-based solutions for textile processing and dye contaminant biodegradation—a review. Environmental Science and Pollution Research, 2017, 24, 14005-14018.	2.7	108
12	Bio-based degradation of emerging endocrine-disrupting and dye-based pollutants using cross-linked enzyme aggregates. Environmental Science and Pollution Research, 2017, 24, 7035-7041.	2.7	98
13	Characteristic features and dye degrading capability of agarâ¿¿agar gel immobilized manganese peroxidase. International Journal of Biological Macromolecules, 2016, 86, 728-740.	3.6	86
14	Immobilized lignin peroxidase from Ganoderma lucidum IBL-05 with improved dye decolorization and cytotoxicity reduction properties. International Journal of Biological Macromolecules, 2017, 103, 57-64.	3.6	85
15	Enhancement of catalytic, reusability, and long-term stability features of Trametes versicolor IBL-04 laccase immobilized on different polymers. International Journal of Biological Macromolecules, 2017, 95, 54-62.	3.6	81
16	Improvement of activity, thermo-stability and fruit juice clarification characteristics of fungal exo-polygalacturonase. International Journal of Biological Macromolecules, 2017, 95, 974-984.	3.6	80
17	Sandal reactive dyes decolorization and cytotoxicity reduction using manganese peroxidase immobilized onto polyvinyl alcohol-alginate beads. Chemistry Central Journal, 2015, 9, 47.	2.6	77
18	Improved exopolysaccharide production from Bacillus licheniformis MS3: Optimization and structural/functional characterization. International Journal of Biological Macromolecules, 2020, 151, 984-992.	3.6	77

MUHAMMAD ASGHER

#	Article	IF	CITATIONS
19	Characterization of purified and Xerogel immobilized Novel Lignin Peroxidase produced from Trametes versicolor IBL-04 using solid state medium of Corncobs. BMC Biotechnology, 2012, 12, 46.	1.7	66
20	Decolorization potential of mixed microbial consortia for reactive and disperse textile dyestuffs. Biodegradation, 2007, 18, 311-316.	1.5	61
21	Improvement of Catalytic Efficiency, Thermo-stability and Dye Decolorization Capability of Pleurotus ostreatusIBL-02 laccase by Hydrophobic Sol Gel Entrapment. Chemistry Central Journal, 2012, 6, 110.	2.6	61
22	Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06. Saudi Journal of Biological Sciences, 2013, 20, 347-352.	1.8	59
23	Bio-catalytic performance and dye-based industrial pollutants degradation potential of agarose-immobilized MnP using a Packed Bed Reactor System. International Journal of Biological Macromolecules, 2017, 102, 582-590.	3.6	59
24	Environmentally responsive and anti-bugs textile finishes – Recent trends, challenges, and future perspectives. Science of the Total Environment, 2019, 690, 667-682.	3.9	54
25	Engineering enzyme-coupled hybrid nanoflowers: The quest for optimum performance to meet biocatalytic challenges and opportunities. International Journal of Biological Macromolecules, 2019, 135, 677-690.	3.6	53
26	Improved biosurfactant production from Aspergillus niger through chemical mutagenesis: characterization and RSM optimization. SN Applied Sciences, 2020, 2, 1.	1.5	53
27	Delignification of Lignocellulose Biomasses by Alginate–Chitosan Immobilized Laccase Produced from Trametes versicolor IBL-04. Waste and Biomass Valorization, 2018, 9, 2071-2079.	1.8	49
28	Immobilization of Alkaline Protease From Bacillus brevis Using Ca-Alginate Entrapment Strategy for Improved Catalytic Stability, Silver Recovery, and Dehairing Potentialities. Catalysis Letters, 2020, 150, 3572-3583.	1.4	48
29	Enhanced Bio-ethanol Production from Old Newspapers Waste Through Alkali and Enzymatic Delignification. Waste and Biomass Valorization, 2017, 8, 2271-2281.	1.8	42
30	Gelatin-Immobilized Manganese Peroxidase with Novel Catalytic Characteristics and Its Industrial Exploitation for Fruit Juice Clarification Purposes. Catalysis Letters, 2016, 146, 2221-2228.	1.4	41
31	Improved catalytic properties of Penicillium notatum lipase immobilized in nanoscale silicone polymeric films. International Journal of Biological Macromolecules, 2017, 97, 279-286.	3.6	39
32	Bacterial cellulose-assisted de-lignified wheat straw-PVA based bio-composites with novel characteristics. Carbohydrate Polymers, 2017, 161, 244-252.	5.1	35
33	Novel catalytic and effluent decolorization functionalities of sol-gel immobilized Pleurotus ostreatus IBL-02 manganese peroxidase produced from bio-processing of wheat straw. Chinese Journal of Catalysis, 2013, 34, 1756-1761.	6.9	34
34	Multiple Parameter Optimizations for Enhanced Biosynthesis of Exo-polygalacturonase Enzyme and its Application in Fruit Juice Clarification. International Journal of Food Engineering, 2017, 13, .	0.7	31
35	Protease-based cross-linked enzyme aggregates with improved catalytic stability, silver removal, and dehairing potentials. International Journal of Biological Macromolecules, 2018, 118, 1247-1256.	3.6	31
36	Development of biocomposites based on bacterial cellulose reinforced delignified rice husk-PVA plasticized with glycerol. Journal of Polymer Research, 2020, 27, 1.	1.2	27

Muhammad Asgher

#	Article	IF	CITATIONS
37	Hyperactivation and thermostabilization of Phanerochaete chrysosporium lignin peroxidase by immobilization in xerogels. World Journal of Microbiology and Biotechnology, 2007, 23, 525-531.	1.7	25
38	Removal of direct Redâ€31 and direct Orangeâ€26 by low cost rice husk: Influence of immobilisation and pretreatments. Canadian Journal of Chemical Engineering, 2011, 89, 1554-1565.	0.9	25
39	Microbial exopolysaccharide-based nano-carriers with unique multi-functionalities for biomedical sectors. Biologia (Poland), 2021, 76, 673-685.	0.8	25
40	Kinetic characterization, thermo-stability and Reactive Red 195A dye detoxifying properties of manganese peroxidase-coupled gelatin hydrogel. Water Science and Technology, 2016, 74, 1809-1820.	1.2	23
41	Purification, Kinetic, and Thermodynamic Characteristics of an Exo-polygalacturonase from Penicillium notatum with Industrial Perspective. Applied Biochemistry and Biotechnology, 2017, 183, 426-443.	1.4	23
42	Strain Improvement Through UV and Chemical Mutagenesis for Enhanced Citric Acid Production in Molasses-Based Solid State Fermentation. Food Biotechnology, 2010, 24, 165-179.	0.6	22
43	Optimization of biosurfactant production from chemically mutated strain of Bacillus subtilis using waste automobile oil as low-cost substrate. Environmental Sustainability, 2020, 3, 405-413.	1.4	22
44	Decolourisation of direct dyes with manganese peroxidase from white rot basidiomycete <i>Ganoderma lucidum</i> ″BLâ€5. Canadian Journal of Chemical Engineering, 2009, 87, 435-440.	0.9	21
45	Statistical Correlation between Ligninolytic Enzymes Secretion and Remazol Brilliant Yellowâ€3GL Dye Degradation Potential of <i>Trametes versicolor</i> IBLâ€04. Water Environment Research, 2016, 88, 338-345.	1.3	21
46	Catalytic, Kinetic and Thermodynamic Characteristics of an Extracellular Lipase from Penicillium notatum. Catalysis Letters, 2017, 147, 281-291.	1.4	20
47	Lignocellulose-degrading enzyme production by Pleurotus sapidus WC 529 and its application in lignin degradation / Lignoselüloz-çözücü enzim üretiminde Pleurotus sapidus WC 529 ve lignin parçalanmasındaki uygulamaları. Turkish Journal of Biochemistry, 2016, 41, 26-36.	0.3	19
48	Biochemical profiling of Pakistani sorghum and millet varieties with special reference to anthocyanins and condensed tannins. International Journal of Food Properties, 2018, 21, 1586-1597.	1.3	18
49	Decolorization of Dyeâ€Containing Textile Industry Effluents Using <i>Ganoderma Lucidum</i> IBLâ€05 in Still Cultures. Water Environment Research, 2010, 82, 357-361.	1.3	17
50	Antioxidant profiling of native and modified cereal brans. International Journal of Food Science and Technology, 2019, 54, 1206-1214.	1.3	15
51	Exploring Marine as a Rich Source of Bioactive Peptides: Challenges and Opportunities from Marine Pharmacology. Marine Drugs, 2022, 20, 208.	2.2	14
52	Sustainable Production, Optimization, and Partial Characterization of Exopolysaccharides by Macrococcus brunensis. Waste and Biomass Valorization, 2021, 12, 6847-6859.	1.8	10
53	Multifunctional materials conjugated with near-infrared fluorescent organic molecules and their targeted cancer bioimaging potentialities. Biomedical Physics and Engineering Express, 2020, 6, 012003.	0.6	9
54	Poly(vinyl Alcohol)-Alginate Immobilized Trametes versicolor IBL-04 Laccase as Eco-friendly Biocatalyst for Dyes Degradation. Catalysis Letters, 2022, 152, 1869-1879.	1.4	9

Muhammad Asgher

#	Article	IF	CITATIONS
55	Fabrication and Catalytic Characterization of Laccase-Loaded Calcium-Alginate Beads for Enhanced Degradation of Dye-Contaminated Aqueous Solutions. Catalysis Letters, 0, , 1.	1.4	8
56	Effect of Exogenous Protease, Mannanase, and Xylanase Supplementation in Corn and High Protein Corn DDGS Based Diets on Growth Performance, Intestinal Morphology and Nutrient Digestibility in Broiler Chickens. Brazilian Journal of Poultry Science, 2019, 21, .	0.3	8
57	Comparative sequence analysis of citrate synthase and 18S ribosomal DNA from a wild and mutant strains of Aspergillus niger with various fungi. Bioinformation, 2014, 10, 1-7.	0.2	6
58	Chemical composition and antioxidant activity of date (Phoenix dactylifera L.) varieties at various maturity stages. Food Science and Technology, 0, 42, .	0.8	5
59	Enhanced Production Of Streptokinase By Chemical Mutagenesis Of Streptococcus agalactiae EBL-20. Brazilian Archives of Biology and Technology, 0, 62, .	0.5	4
60	Optimization of process variables for enhanced production of extracellular lipase by Pleurotus ostreatus IBL-02 in solid-state fermentation. Pakistan Journal of Pharmaceutical Sciences, 2019, 32, 617-624.	0.2	4
61	Remediation of Pb(II) usingPleurotus sajor-cajuisolated from metal-contaminated site. Desalination and Water Treatment, 2015, 56, 2532-2542.	1.0	3
62	Optimization of pH, temperature and CaCl ₂ concentrations for Ricotta cheese production from Buffalo cheese whey using Response Surface Methodology. Journal of Dairy Research, 2017, 84, 109-116.	0.7	3
63	Exopolysaccharides production from marine Bacillus strains and their antioxidant and bio-flocculant capacities. Archives of Microbiology, 2022, 204, 250.	1.0	3
64	Binding interaction of benzamide derivatives as inhibitors of DNA gyrase and Sec14p using Molegro Virtual Docker based on binding free energy. Zeitschrift Fur Physikalische Chemie, 2022, 236, 561-581.	1.4	2
65	Enhanced production of streptokinase from Streptococcus agalactiae EBL-31 by response surface methodology. Pakistan Journal of Pharmaceutical Sciences, 2018, 31, 1597-1602.	0.2	2
66	Citrate synthase gene comparison and use of RAPD genomic fingerprinting to study relatedness among different Aspergillus sp (912.1). FASEB Journal, 2014, 28, 912.1.	0.2	1
67	First Report on the Bioremediation of Textile Industrial Effluents by Piptoporus Betulinus IEBL-3 by Using Response Surface Methodology. Applied Sciences (Switzerland), 2022, 12, 1090.	1.3	1
68	Greener approach to substitute chemical reduction clearing process for fabric dyed with Foron Blue E-BL 150, Foron Rubine RD-GFL and Foron Brilliant Yellow S-6GL using indigenous resources. Zeitschrift Fur Physikalische Chemie, 2021, .	1.4	0