Lique M Coolen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8579305/publications.pdf

Version: 2024-02-01

57631 49773 8,487 127 44 87 citations h-index g-index papers 129 129 129 4452 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Minireview: Kisspeptin/Neurokinin B/Dynorphin (KNDy) Cells of the Arcuate Nucleus: A Central Node in the Control of Gonadotropin-Releasing Hormone Secretion. Endocrinology, 2010, 151, 3479-3489.	1.4	657
2	Kisspeptin Neurons in the Arcuate Nucleus of the Ewe Express Both Dynorphin A and Neurokinin B. Endocrinology, 2007, 148, 5752-5760.	1.4	581
3	The Catabolic Action of Insulin in the Brain Is Mediated by Melanocortins. Journal of Neuroscience, 2002, 22, 9048-9052.	1.7	363
4	Variation in Kisspeptin and RFamide-Related Peptide (RFRP) Expression and Terminal Connections to Gonadotropin-Releasing Hormone Neurons in the Brain: A Novel Medium for Seasonal Breeding in the Sheep. Endocrinology, 2008, 149, 5770-5782.	1.4	335
5	Identification of a Potential Ejaculation Generator in the Spinal Cord. Science, 2002, 297, 1566-1569.	6.0	317
6	The Kisspeptin/Neurokinin B/Dynorphin (KNDy) Cell Population of the Arcuate Nucleus: Sex Differences and Effects of Prenatal Testosterone in Sheep. Endocrinology, 2010, 151, 301-311.	1.4	249
7	Fos immunoreactivity in the rat brain following consummatory elements of sexual behavior: a sex comparison. Brain Research, 1996, 738, 67-82.	1.1	241
8	Central regulation of ejaculation. Physiology and Behavior, 2004, 83, 203-215.	1.0	224
9	Evidence That Dynorphin Plays a Major Role in Mediating Progesterone Negative Feedback on Gonadotropin-Releasing Hormone Neurons in Sheep. Endocrinology, 2004, 145, 2959-2967.	1.4	204
10	Kisspeptin, Neurokinin B, and Dynorphin Act in the Arcuate Nucleus to Control Activity of the GnRH Pulse Generator in Ewes. Endocrinology, 2013, 154, 4259-4269.	1.4	191
11	Bidirectional connections of the medial amygdaloid nucleus in the Syrian hamster brain: Simultaneous anterograde and retrograde tract tracing., 1998, 399, 189-209.		190
12	Neural activation following sexual behavior in the male and female rat brain. Behavioural Brain Research, 1998, 92, 181-193.	1.2	186
13	Sexual Behavior and Sex-Associated Environmental Cues Activate the Mesolimbic System in Male Rats. Neuropsychopharmacology, 2004, 29, 718-730.	2.8	171
14	Neurokinin 3 Receptor Immunoreactivity in the Septal Region, Preoptic Area and Hypothalamus of the Female Sheep: Colocalisation in Neurokinin B Cells of the Arcuate Nucleus but not in Gonadotrophinâ€Releasing Hormone Neurones. Journal of Neuroendocrinology, 2010, 22, 1-12.	1,2	158
15	Molecular Mapping of the Neural Pathways Linking Leptin to the Neuroendocrine Reproductive Axis. Endocrinology, 2011, 152, 2302-2310.	1.4	152
16	KNDy Cells Revisited. Endocrinology, 2018, 159, 3219-3234.	1.4	144
17	Do similar neural systems subserve aggressive and sexual behaviour in male rats? Insights from c-Fos and pharmacological studies. European Journal of Pharmacology, 2005, 526, 226-239.	1.7	136
18	Anatomy of the kisspeptin neural network in mammals. Brain Research, 2010, 1364, 90-102.	1.1	129

#	Article	IF	CITATIONS
19	Anatomical interrelationships of the medial preoptic area and other brain regions activated following male sexual behavior: A combined Fos and tract-tracing study., 1998, 397, 421-435.		125
20	Colocalization of Progesterone Receptors in Parvicellular Dynorphin Neurons of the Ovine Preoptic Area and Hypothalamus. Endocrinology, 2002, 143, 4366-4374.	1.4	123
21	Sexual reward in male rats: Effects of sexual experience on conditioned place preferences associated with ejaculation and intromissions. Hormones and Behavior, 2009, 55, 93-97.	1.0	119
22	KNDy (Kisspeptin/Neurokinin B/Dynorphin) Neurons Are Activated during Both Pulsatile and Surge Secretion of LH in the Ewe. Endocrinology, 2012, 153, 5406-5414.	1.4	119
23	Activation of a Subset of Lumbar Spinothalamic Neurons after Copulatory Behavior in Male But Not Female Rats. Journal of Neuroscience, 2003, 23, 325-331.	1.7	115
24	Mixing pleasures: Review of the effects of drugs on sex behavior in humans and animal models. Hormones and Behavior, 2010, 58, 149-162.	1.0	102
25	Natural and Drug Rewards Act on Common Neural Plasticity Mechanisms with ΔFosB as a Key Mediator. Journal of Neuroscience, 2013, 33, 3434-3442.	1.7	100
26	Neuroplasticity in the Mesolimbic System Induced by Natural Reward and Subsequent Reward Abstinence. Biological Psychiatry, 2010, 67, 872-879.	0.7	95
27	Diurnal Variations in Natural and Drug Reward, Mesolimbic Tyrosine Hydroxylase, and Clock Gene Expression in the Male Rat. Journal of Biological Rhythms, 2009, 24, 465-476.	1.4	94
28	Demonstration of Ejaculation-Induced Neural Activity in the Male Rat Brain Using 5-HT1A Agonist 8-OH-DPAT. Physiology and Behavior, 1997, 62, 881-891.	1.0	91
29	Spinal cord control of ejaculation. World Journal of Urology, 2005, 23, 119-126.	1.2	85
30	Afferent connections of the parvocellular subparafascicular thalamic nucleus in the rat: Evidence for functional subdivisions. Journal of Comparative Neurology, 2003, 463, 132-156.	0.9	83
31	$\hat{\mathbb{P}}$ -Opioid Receptor Is Colocalized in GnRH and KNDy Cells in the Female Ovine and Rat Brain. Endocrinology, 2016, 157, 2367-2379.	1.4	79
32	î"FosB in the nucleus accumbens is critical for reinforcing effects of sexual reward. Genes, Brain and Behavior, 2010, 9, 831-840.	1.1	76
33	The selective serotonin re-uptake inhibitors fluvoxamine and paroxetine differ in sexual inhibitory effects after chronic treatment. Psychopharmacology, 2002, 160, 283-289.	1.5	73
34	Bidirectional interactions between the circadian and reward systems: is restricted food access a unique zeitgeber?. European Journal of Neuroscience, 2009, 30, 1739-1748.	1.2	66
35	A Role for Neurokinin B in Pulsatile GnRH Secretion in the Ewe. Neuroendocrinology, 2014, 99, 18-32.	1.2	66
36	Activation of \hat{l} opioid receptors in the medial preoptic area following copulation in male rats. Neuroscience, 2004, 124, 11-21.	1.1	64

#	Article	IF	Citations
37	Evidence That Dopamine Acts via Kisspeptin to Hold GnRH Pulse Frequency in Check in Anestrous Ewes. Endocrinology, 2012, 153, 5918-5927.	1.4	64
38	Parvocellular subparafascicular thalamic nucleus in the rat: Anatomical and functional compartmentalization. Journal of Comparative Neurology, 2003, 463, 117-131.	0.9	61
39	Neural control of ejaculation. Journal of Comparative Neurology, 2005, 493, 39-45.	0.9	61
40	Neural Systems Mediating Seasonal Breeding in the Ewe. Journal of Neuroendocrinology, 2010, 22, 674-681.	1.2	58
41	Evidence for Changes in Numbers of Synaptic Inputs onto KNDy and GnRH Neurones during the Preovulatory LH Surge in the Ewe. Journal of Neuroendocrinology, 2015, 27, 624-635.	1.2	57
42	Morphological Plasticity in the Neural Circuitry Responsible for Seasonal Breeding in the Ewe. Endocrinology, 2006, 147, 4843-4851.	1.4	55
43	Prenatal Testosterone Treatment Leads to Changes in the Morphology of KNDy Neurons, Their Inputs, and Projections to GnRH Cells in Female Sheep. Endocrinology, 2015, 156, 3277-3291.	1.4	55
44	Kisspeptin/Neurokinin B/Dynorphin (KNDy) cells as integrators of diverse internal and external cues: evidence from viral-based monosynaptic tract-tracing in mice. Scientific Reports, 2019, 9, 14768.	1.6	52
45	Diurnal and circadian regulation of reward-related neurophysiology and behavior. Physiology and Behavior, 2015, 143, 58-69.	1.0	50
46	Opiate Exposure and Withdrawal Induces a Molecular Memory Switch in the Basolateral Amygdala between ERK1/2 and CaMKIIα-Dependent Signaling Substrates. Journal of Neuroscience, 2013, 33, 14693-14704.	1.7	49
47	Endogenous Opioid-Induced Neuroplasticity of Dopaminergic Neurons in the Ventral Tegmental Area Influences Natural and Opiate Reward. Journal of Neuroscience, 2014, 34, 8825-8836.	1.7	46
48	Natural Reward Experience Alters AMPA and NMDA Receptor Distribution and Function in the Nucleus Accumbens. PLoS ONE, 2012, 7, e34700.	1.1	46
49	Lesions of the Medial Prefrontal Cortex Cause Maladaptive Sexual Behavior in Male Rats. Biological Psychiatry, 2010, 67, 1199-1204.	0.7	45
50	Risperidone Pretreatment Prevents Elevated Locomotor Activity Following Neonatal Hippocampal Lesions. Neuropsychopharmacology, 2006, 31, 77-89.	2.8	44
51	Diurnal rhythms in neural activation in the mesolimbic reward system: critical role of the medial prefrontal cortex. European Journal of Neuroscience, 2013, 38, 2319-2327.	1.2	44
52	Lesions of orexin neurons block conditioned place preference for sexual behavior in male rats. Hormones and Behavior, 2011, 59, 1-8.	1.0	43
53	A Pivotal Role of Lumbar Spinothalamic Cells in the Regulation of Ejaculation via Intraspinal Connections. Journal of Sexual Medicine, 2012, 9, 2256-2265.	0.3	43
54	The Premammillary Hypothalamic Area of the Ewe: Anatomical Characterization of a Melatonin Target Area Mediating Seasonal Reproduction1. Biology of Reproduction, 2004, 70, 1768-1775.	1.2	41

#	Article	IF	CITATIONS
55	Prenatal Programming by Testosterone of Hypothalamic Metabolic Control Neurones in the Ewe. Journal of Neuroendocrinology, 2011, 23, 401-411.	1.2	40
56	Regulation of GnRH pulsatility in ewes. Reproduction, 2018, 156, R83-R99.	1.1	39
57	Methamphetamine acts on subpopulations of neurons regulating sexual behavior in male rats. Neuroscience, 2010, 166, 771-784.	1.1	38
58	Evidence That Dynorphin Acts Upon KNDy and GnRH Neurons During GnRH Pulse Termination in the Ewe. Endocrinology, 2018, 159, 3187-3199.	1.4	38
59	Neuronal plasticity and seasonal reproduction in sheep. European Journal of Neuroscience, 2010, 32, 2152-2164.	1.2	37
60	Mating activates NMDA receptors in the medial preoptic area of male rats Behavioral Neuroscience, 2007, 121, 1023-1031.	0.6	36
61	Prenatal Testosterone Exposure Alters GABAergic Synaptic Inputs to GnRH and KNDy Neurons in a Sheep Model of Polycystic Ovarian Syndrome. Endocrinology, 2019, 160, 2529-2542.	1.4	36
62	Orexin mediates initiation of sexual behavior in sexually naive male rats, but is not critical for sexual performance. Hormones and Behavior, 2010, 58, 397-404.	1.0	32
63	In vivo imaging of the GnRH pulse generator reveals a temporal order of neuronal activation and synchronization during each pulse. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	32
64	A new method for simultaneous demonstration of anterograde and retrograde connections in the brain: co-injections of biotinylated dextran amine and the beta subunit of cholera toxin. Journal of Neuroscience Methods, 1999, 91, 1-8.	1.3	31
65	Prenatal Androgen Exposure Alters KNDy Neurons and Their Afferent Network in a Model of Polycystic Ovarian Syndrome. Endocrinology, 2021, 162, .	1.4	31
66	The Transcription Factor Runx2 Is under Circadian Control in the Suprachiasmatic Nucleus and Functions in the Control of Rhythmic Behavior. PLoS ONE, 2013, 8, e54317.	1.1	30
67	Ventral Tegmental Area Dopamine Cell Activation during Male Rat Sexual Behavior Regulates Neuroplasticity and d-Amphetamine Cross-Sensitization following Sex Abstinence. Journal of Neuroscience, 2016, 36, 9949-9961.	1.7	29
68	Orphanin FQ: Evidence for a Role in the Control of the Reproductive Neuroendocrine System. Endocrinology, 2007, 148, 4993-5001.	1.4	28
69	Concurrent Exposure to Methamphetamine and Sexual Behavior Enhances Subsequent Drug Reward and Causes Compulsive Sexual Behavior in Male Rats. Journal of Neuroscience, 2011, 31, 16473-16482.	1.7	28
70	Influences of social reward experience on behavioral responses to drugs of abuse: Review of shared and divergent neural plasticity mechanisms for sexual reward and drugs of abuse. Neuroscience and Biobehavioral Reviews, 2017, 83, 356-372.	2.9	28
71	Altered Behavioral Response to Dopamine D3 Receptor Agonists 7-OH-DPAT and PD 128907 Following Repetitive Amphetamine Administration. Neuropsychopharmacology, 2003, 28, 1422-1432.	2.8	27
72	Activation of Gastrin-releasing Peptide Receptors in the Lumbosacral Spinal Cord is Required for Ejaculation in Male Rats. Journal of Sexual Medicine, 2012, 9, 1303-1318.	0.3	27

#	Article	IF	Citations
73	Effects of Season and Estradiol on KNDy Neuron Peptides, Colocalization With D2 Dopamine Receptors, and Dopaminergic Inputs in the Ewe. Endocrinology, 2017, 158, 831-841.	1.4	27
74	Dynorphin Immunoreactive Fibers Contact GnRH Neurons in the Human Hypothalamus. Reproductive Sciences, 2009, 16, 781-787.	1.1	26
75	Effects of methamphetamine on sexual performance and compulsive sex behavior in male rats. Psychopharmacology, 2010, 212, 93-104.	1.5	26
76	Prenatal Testosterone Excess Decreases Neurokinin 3 Receptor Immunoreactivity within the Arcuate Nucleus <scp>KND</scp> y Cell Population. Journal of Neuroendocrinology, 2015, 27, 100-110.	1.2	26
77	Do Substance P and Neurokinin A Play Important Roles in the Control of LH Secretion in Ewes?. Endocrinology, 2016, 157, 4829-4841.	1.4	26
78	Activation of NMDA Receptors in Lumbar Spinothalamic Cells is Required for Ejaculation. Journal of Sexual Medicine, 2011, 8, 1015-1026.	0.3	24
79	Early versus Late-Phase Consolidation of Opiate Reward Memories Requires Distinct Molecular and Temporal Mechanisms in the Amygdala-Prefrontal Cortical Pathway. PLoS ONE, 2013, 8, e63612.	1.1	23
80	Does the KNDy Model for the Control of Gonadotropin-Releasing Hormone Pulses Apply to Monkeys and Humans?. Seminars in Reproductive Medicine, 2019, 37, 071-083.	0.5	23
81	Role of SIP30 in the development and maintenance of peripheral nerve injury-induced neuropathic pain. Pain, 2009, 146, 130-140.	2.0	22
82	Sex differences and effects of prenatal exposure to excess testosterone on ventral tegmental area dopamine neurons in adult sheep. European Journal of Neuroscience, 2015, 41, 1157-1166.	1.2	21
83	Prenatal testosterone exposure decreases colocalization of insulin receptors in kisspeptin/neurokinin B/dynorphin and agoutiâ€related peptide neurons of the adult ewe. European Journal of Neuroscience, 2016, 44, 2557-2568.	1.2	21
84	Activation of MAP Kinase in Lumbar Spinothalamic Cells Is Required for Ejaculation. Journal of Sexual Medicine, 2010, 7, 2445-2457.	0.3	19
85	Effects of acute and chronic apomorphine on sex behavior and copulation-induced neural activation in the male rat. European Journal of Pharmacology, 2007, 576, 61-76.	1.7	18
86	Activation of Mu or Delta Opioid Receptors in the Lumbosacral Spinal Cord Is Essential for Ejaculatory Reflexes in Male Rats. PLoS ONE, 2015, 10, e0121130.	1.1	18
87	Differential Effects of Adrenalectomy on Melanin-Concentrating Hormone and Orexin A. Endocrinology, 2004, 145, 3404-3412.	1.4	17
88	Estradiol Negative Feedback Regulation by Glutamatergic Afferents to A15 Dopaminergic Neurons: Variation with Season. Endocrinology, 2009, 150, 4663-4671.	1.4	16
89	Neural system-enriched gene expression: relationship to biological pathways and neurological diseases. Physiological Genomics, 2004, 18, 167-183.	1.0	15
90	Neural Regulation of Ejaculation. Journal of Sexual Medicine, 2009, 6, 229-233.	0.3	15

#	Article	IF	Citations
91	Orexin and natural reward. Progress in Brain Research, 2012, 198, 65-77.	0.9	15
92	NMDA and PACAP Receptor Signaling Interact to Mediate Retinal-Induced SCN Cellular Rhythmicity in the Absence of Light. PLoS ONE, 2013, 8, e76365.	1.1	15
93	Three-dimensional imaging of KNDy neurons in the mammalian brain using optical tissue clearing and multiple-label immunocytochemistry. Scientific Reports, 2018, 8, 2242.	1.6	15
94	Chronic Contusion Spinal Cord Injury Impairs Ejaculatory Reflexes in Male Rats: Partial Recovery by Systemic Infusions of Dopamine D3 Receptor Agonist 7OHDPAT. Journal of Neurotrauma, 2016, 33, 943-953.	1.7	14
95	Nucleus accumbens NMDA receptor activation regulates amphetamine cross-sensitization and deltaFosB expression following sexual experience in male rats. Neuropharmacology, 2016, 101, 154-164.	2.0	14
96	Neurons containing tuberoinfundibular peptide of 39 residues are activated following male sexual behavior. Neuropeptides, 2006, 40, 403-408.	0.9	13
97	Treatment with a serotonin-depleting regimen of MDMA prevents conditioned place preference to sex in male rats Behavioral Neuroscience, 2007, 121, 586-593.	0.6	13
98	Evidence that \hat{I}^3 -Aminobutyric Acid Is Part of the Neural Circuit Mediating Estradiol Negative Feedback in Anestrous Ewes. Endocrinology, 2008, 149, 2762-2772.	1.4	13
99	Evidence that Orphanin FQ Mediates Progesterone Negative Feedback in the Ewe. Endocrinology, 2013, 154, 4249-4258.	1.4	12
100	mGluR5 activation in the nucleus accumbens is not essential for sexual behavior or cross-sensitization of amphetamine responses by sexual experience. Neuropharmacology, 2016, 107, 122-130.	2.0	12
101	Activation of galanin and cholecystokinin receptors in the lumbosacral spinal cord is required for ejaculation in male rats. European Journal of Neuroscience, 2017, 45, 846-858.	1.2	12
102	The 3rd World Conference on Kisspeptin, "Kisspeptin 2017: Brain and Beyond― Unresolved questions, challenges and future directions for the field. Journal of Neuroendocrinology, 2018, 30, e12600.	1.2	12
103	Highlights of neuroanatomical discoveries of the mammalian gonadotropinâ€releasing hormone system. Journal of Neuroendocrinology, 2022, 34, e13115.	1.2	11
104	Maladaptive Sexual Behavior Following Concurrent Methamphetamine and Sexual Experience in Male Rats is Associated with Altered Neural Activity in Frontal Cortex. Neuropsychopharmacology, 2017, 42, 2011-2020.	2.8	10
105	The Roles of Neurokinins and Endogenous Opioid Peptides in Control of Pulsatile LH Secretion. Vitamins and Hormones, 2018, 107, 89-135.	0.7	10
106	Effects of Sexual Experience on Psychostimulant- and Opiate-Induced Behavior and Neural Plasticity in the Mesocorticolimbic Pathway. International Review of Neurobiology, 2018, 140, 249-270.	0.9	10
107	Evidence that Nitric Oxide Is Critical for LH Surge Generation in Female Sheep. Endocrinology, 2020, 161, .	1.4	10
108	Male sexual function. Physiology and Behavior, 2004, 83, 175-176.	1.0	9

#	Article	IF	CITATIONS
109	Evidence That the LH Surge in Ewes Involves Both Neurokinin B–Dependent and –Independent Actions of Kisspeptin. Endocrinology, 2019, 160, 2990-3000.	1.4	9
110	Drug-taking in a socio-sexual context enhances vulnerability for addiction in male rats. Neuropsychopharmacology, 2019, 44, 503-513.	2.8	9
111	Recognizing Team Science Contributions in Academic Hiring, Promotion, and Tenure. Journal of Neuroscience, 2020, 40, 6662-6663.	1.7	7
112	Activation of POMC neurons during general arousal but not sexual behavior in male rats Behavioral Neuroscience, 2007, 121, 1012-1022.	0.6	6
113	Unraveling the Mechanism of Action of the GnRH Pulse Generator. , 2014, , 133-152.		6
114	Chronic Spinal Cord Injury Reduces Gastrin-Releasing Peptide in the Spinal Ejaculation Generator in Male Rats. Journal of Neurotrauma, 2019, 36, 3378-3393.	1.7	6
115	Role for Kisspeptin and Neurokinin B in Regulation of Luteinizing Hormone and Testosterone Secretion in the Fetal Sheep. Endocrinology, 2020, 161, .	1.4	5
116	Compulsive Sexual Behavior in Humans and Preclinical Models. Current Sexual Health Reports, 2018, 10, 124-131.	0.4	4
117	Spinal Cord Injury Causes Reduction of Galanin and Gastrin Releasing Peptide mRNA Expression in the Spinal Ejaculation Generator of Male Rats. Frontiers in Neurology, 2021, 12, 670536.	1.1	4
118	Dopamine Receptor Alternative Splicing. , 2005, , 45-61.		3
119	Enhancement of Drug Seeking Following Drug Taking in a Sexual Context Requires Anterior Cingulate Cortex Activity in Male Rats. Frontiers in Behavioral Neuroscience, 2020, 14, 87.	1.0	2
120	Corrigendum to "Role of SIP30 in the development and maintenance of peripheral nerve injury-induced neuropathic pain―[Pain 146 (2009) 130–140]. Pain, 2010, 148, 176.	2.0	1
121	Unraveling the Neural Mechanisms Underlying the GnRH Pulse Generator: An Update., 2021,, 123-148.		1
122	Involvement of Nitric Oxide in Sexual Learning via Action in the Medial Preoptic Area: Theoretical Comment on Lagoda et al. (2004) Behavioral Neuroscience, 2004, 118, 1473-1475.	0.6	0
123	Special Issue with Review Articles from the 18th Annual Meeting of the Society for Behavioral Neuroendocrinology in Sydney, Australia in August 2014. Hormones and Behavior, 2015, 76, 1-2.	1.0	O
124	SAT-421 Cell-Specific Ablation of GnRH Neurons Using Kisspeptin-Saporin in the Preoptic Area of Sheep, but Not Mice. Journal of the Endocrine Society, 2019, 3, .	0.1	0
125	SAT-426 Rabies-Mediated Monosynaptic Tract-Tracing of Sexually Dimorphic Estrogen-Sensitive Afferents to KNDy Neurons in the Mouse. Journal of the Endocrine Society, 2019, 3, .	0.1	O
126	Sex Comparison of Drugâ€seeking Behavior after Limitedâ€Access Methamphetamineâ€taking in a Socioâ€sexual Context in Rats. FASEB Journal, 2019, 33, 805.8.	0.2	0

#	Article	lF	CITATIONS
127	Localization of the CYP4A Enzymes that Produce 20â€HETE and the 20â€HETE Receptor in the Brain. FASEB Journal, 2019, 33, 500.12.	0.2	O