
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8578148/publications.pdf Version: 2024-02-01

TOMMASO COR

#	Article	IF	CITATIONS
1	Non-invasive peripheral vascular function, incident cardiovascular disease, and mortality in the general population. Cardiovascular Research, 2022, 118, 904-912.	1.8	3
2	Randomized non-inferiority TrIal comParing reverse T And Protrusion versus double-kissing and crush Stenting for the treatment of complex left main bifurcation lesions. Clinical Research in Cardiology, 2022, 111, 750-760.	1.5	2
3	The role of superficial wall stress and mechanical factors in scaffold failure: Protocol of the RANSOMED study. Cardiology Journal, 2022, , .	0.5	2
4	Percutaneous coronary intervention for chronic total occlusion in octogenarians: a propensity score study. Scientific Reports, 2022, 12, 3073.	1.6	1
5	Restenosis after Coronary Stent Implantation: Cellular Mechanisms and Potential of Endothelial Progenitor Cells (A Short Guide for the Interventional Cardiologist). Cells, 2022, 11, 2094.	1.8	11
6	Haemodynamic documentation of epicardial coronary spasm. European Heart Journal - Case Reports, 2021, 5, ytab008.	0.3	0
7	Coronary Stent Strut Fractures: Classification, Prevalence and Clinical Associations. Journal of Clinical Medicine, 2021, 10, 1765.	1.0	5
8	Coronary In-Stent Restenosis: Predictors and Treatment. Deutsches Ärzteblatt International, 2021, 118, 637-644.	0.6	24
9	Vascular Wall Reactions to Coronary Stents—Clinical Implications for Stent Failure. Life, 2021, 11, 63.	1.1	12
10	The Bioengineered Combo Dual-Therapy CD34 Antibody-Covered Sirolimus-Eluting Coronary Stent in Patients with Chronic Total Occlusion Evaluated by Clinical Outcome and Optical Coherence Tomography Imaging Analysis. Journal of Clinical Medicine, 2021, 10, 80.	1.0	5
11	No difference in 30-day outcome and quality of life in transradial versus transfemoral access – Results from the German Austrian ABSORB registry (GABI-R). Cardiovascular Revascularization Medicine, 2021, , .	0.3	1
12	Vasomotor Dysfunction in Patients with Ischemia and Non-Obstructive Coronary Artery Disease: Current Diagnostic and Therapeutic Strategies. Biomedicines, 2021, 9, 1774.	1.4	1
13	Effects of Clopidogrel, Prasugrel and Ticagrelor on Microvascular Function and Platelet Reactivity in Patients With Acute Coronary Syndrome Undergoing Coronary Artery Stenting. A Randomized, Blinded, Parallel Group Trial. Frontiers in Cardiovascular Medicine, 2021, 8, 780605.	1.1	0
14	How to re-style your life. European Journal of Preventive Cardiology, 2020, 27, 391-393.	0.8	1
15	Comparison between treatment of "established―versus complex "off-label―coronary lesions with Absorb® bioresorbable scaffold implantation: results from the GABI-R® registry. Clinical Research in Cardiology, 2020, 109, 374-384.	1.5	1
16	Reply to â€~Relationship between stent fracture and thrombosis'. Nature Reviews Cardiology, 2020, 17, 64-65.	6.1	1
17	Effects of clopidogrel vs. prasugrel vs. ticagrelor on endothelial function, inflammatory parameters, and platelet function in patients with acute coronary syndrome undergoing coronary artery stenting: a randomized, blinded, parallel study. European Heart Journal, 2020, 41, 3144-3152.	1.0	53
18	Impact of coronary calcification on outcomes after ABSORB scaffold implantation: insights from the GABI-R registry. Coronary Artery Disease, 2020, 31, 578-585.	0.3	1

#	Article	IF	CITATIONS
19	Stent Thrombosis After Percutaneous Coronary Intervention. Cardiology Clinics, 2020, 38, 639-647.	0.9	16
20	Apple Watch detecting coronary ischaemia during chest pain episodes or an apple a day may keep myocardial infarction away. European Heart Journal, 2020, 41, 2224-2224.	1.0	29
21	Randomised, non-inferiority, controlled procedural outcomes TrIal comParing reverse T And Protrusion versus double-kissing and crush stenting: protocol of the TIP TAP I randomised trial. BMJ Open, 2020, 10, e034264.	0.8	3
22	Predictors for Target Vessel Failure after Recanalization of Chronic Total Occlusions in Patients Undergoing Surveillance Coronary Angiography. Journal of Clinical Medicine, 2020, 9, 178.	1.0	6
23	Impact of renal function on clinical outcomes after PCI in ACS and stable CAD patients treated with ticagrelor: a prespecified analysis of the GLOBAL LEADERS randomized clinical trial. Clinical Research in Cardiology, 2020, 109, 930-943.	1.5	14
24	Perspective: cardiovascular disease and the Covid-19 pandemic. Basic Research in Cardiology, 2020, 115, 32.	2.5	57
25	Exogenous NO Therapy for the Treatment and Prevention of Atherosclerosis. International Journal of Molecular Sciences, 2020, 21, 2703.	1.8	21
26	Five Years Outcomes and Predictors of Events in a Single-Center Cohort of Patients Treated with Bioresorbable Coronary Vascular Scaffolds. Journal of Clinical Medicine, 2020, 9, 847.	1.0	1
27	Shortâ€term eâ€cigarette vapor exposure causes vascular oxidative stress and dysfunction †evidence for a close connection to brain damage and a key role of the phagocytic NADPH oxidase (NOXâ€2). FASEB Journal, 2020, 34, 1-1.	0.2	1
28	Coronary Stent Thrombosis — Predictors and Prevention. Deutsches Ärzteblatt International, 2020, 117, 320-326.	0.6	26
29	Bioresorbable vascular scaffold versus metallic drug-eluting stent in patients at high risk of restenosis: the COMPARE-ABSORB randomised clinical trial. EuroIntervention, 2020, 16, 645-653.	1.4	12
30	Endothelial Function Assessed by Digital Volume Plethysmography Predicts the Development and Progression of Type 2 Diabetes Mellitus. Journal of the American Heart Association, 2019, 8, e012509.	1.6	28
31	Hybrid Coronary Percutaneous Treatment with Metallic Stents and Everolimus-Eluting Bioresorbable Vascular Scaffolds: 2-Years Results from the GABI-R Registry. Journal of Clinical Medicine, 2019, 8, 767.	1.0	0
32	Incidental Finding of Strut Malapposition Is a Predictor of Late and Very Late Thrombosis in Coronary Bioresorbable Scaffolds. Journal of Clinical Medicine, 2019, 8, 580.	1.0	7
33	Absorb Bioresorbable Scaffold Versus Xience Metallic Stent for Prevention of Restenosis Following Percutaneous Coronary Intervention in Patients at High Risk of Restenosis: Rationale and Design of the COMPARE ABSORB Trial. Cardiovascular Revascularization Medicine, 2019, 20, 577-582.	0.3	7
34	Bioresorbable vascular scaffolds for percutaneous treatment of chronic total coronary occlusions: a meta-analysis. BMC Cardiovascular Disorders, 2019, 19, 59.	0.7	6
35	Procedural Predictors for Bioresorbable Vascular Scaffold Thrombosis: Analysis of the Individual Components of the "PSP―Technique. Journal of Clinical Medicine, 2019, 8, 93.	1.0	6
36	Effect of a Strategy of Comprehensive Vasodilation vs Usual Care on Mortality and Heart Failure Rehospitalization Among Patients With Acute Heart Failure. JAMA - Journal of the American Medical Association, 2019, 322, 2292.	3.8	85

#	Article	IF	CITATIONS
37	Predictors of stent thrombosis and their implications for clinical practice. Nature Reviews Cardiology, 2019, 16, 243-256.	6.1	117
38	Clinical, Angiographic, and ProceduralÂCorrelates of VeryÂLateÂAbsorbÂScaffoldÂThrombosis. JACC: Cardiovascular Interventions, 2018, 11, 638-644.	1.1	20
39	Predictors of early scaffold thrombosis. Coronary Artery Disease, 2018, 29, 389-396.	0.3	6
40	Clinical outcomes of patients with diabetes mellitus treated with Absorb bioresorbable vascular scaffolds: a subanalysis of the <scp>E</scp> uropean <scp>M</scp> ulticentre <scp>GHOST</scp> â€ <scp>EU</scp> <scp>R</scp> egistry. Catheterization and Cardiovascular Interventions, 2018, 91, 444-453.	0.7	8
41	Endothelial Function: A Short Guide for the Interventional Cardiologist. International Journal of Molecular Sciences, 2018, 19, 3838.	1.8	27
42	Blinded outcomes and angina assessment of coronary bioresorbable scaffolds: 30-day and 1-year results from the ABSORB IV randomised trial. Lancet, The, 2018, 392, 1530-1540.	6.3	103
43	Predictors of bioresorbable scaffold failure in STEMI patients at 3†years follow-up. International Journal of Cardiology, 2018, 268, 68-74.	0.8	9
44	Bioresorbable vascular scaffold: a step back thinking of the future. Postepy W Kardiologii Interwencyjnej, 2018, 14, 117-119.	0.1	2
45	Three-years outcomes of diabetic patients treated with coronary bioresorbable scaffolds. BMC Cardiovascular Disorders, 2018, 18, 92.	0.7	15
46	Bioresorbable everolimus-eluting vascular scaffold for patients presenting with non STelevation-acute coronary syndrome: A three-years follow-up1. Clinical Hemorheology and Microcirculation, 2018, 69, 3-8.	0.9	13
47	Effects of gaseous and solid constituents of air pollution on endothelial function. European Heart Journal, 2018, 39, 3543-3550.	1.0	263
48	Characteristics and outcome of patients with complex coronary lesions treated with bioresorbable scaffolds: three-year follow-up in a cohort of consecutive patients. EuroIntervention, 2018, 14, e1011-e1019.	1.4	15
49	First Evidence of Complete Resorption 4ÂYears After Bioresorbable Scaffold Implantation in the Setting of ST-SegmentÂElevationÂMyocardial Infarction. JACC: Cardiovascular Interventions, 2017, 10, 200-202.	1.1	3
50	Both flow-mediated dilation andÂconstriction are associated withÂchanges inÂblood flow and shear stress:ÂTwoÂcomplementary perspectives onÂendothelial function. Clinical Hemorheology and Microcirculation, 2017, 64, 255-266.	0.9	16
51	Endothelial function, fluid dynamics, hemorheology implications for clinical andÂpreclinical vascular disease andÂimplications for the ESCHM. Clinical Hemorheology and Microcirculation, 2017, 64, 521-524.	0.9	4
52	Bioresorbable Everolimus-Eluting Vascular Scaffold for Long Coronary Lesions. JACC: Cardiovascular Interventions, 2017, 10, 560-568.	1.1	16
53	Clinical, Angiographic, and Procedural Correlates of Acute, Subacute, and Late Absorb Scaffold Thrombosis. JACC: Cardiovascular Interventions, 2017, 10, 1809-1815.	1.1	26
54	Incidence, Clinical Presentation, and Predictors of Clinical Restenosis in Coronary Bioresorbable Scaffolds. JACC: Cardiovascular Interventions, 2017, 10, 1819-1827.	1.1	28

#	Article	IF	CITATIONS
55	Characteristics, Predictors, and Mechanisms of Thrombosis inÂCoronary Bioresorbable Scaffolds. JACC: Cardiovascular Interventions, 2017, 10, 2363-2371.	1.1	35
56	Long-term outcome of bioresorbable vascular scaffolds for the treatment of coronary artery disease: a meta-analysis of RCTs. BMC Cardiovascular Disorders, 2017, 17, 147.	0.7	29
57	Impact of overlapping on 1â€year clinical outcomes in patients undergoing everolimusâ€eluting bioresorbable scaffolds implantation in routine clinical practice: Insights from the European multicenter GHOSTâ€EU registry. Catheterization and Cardiovascular Interventions, 2017, 89, 812-818.	0.7	15
58	Bioresorbable vascular scaffold use for coronary bifurcation lesions: A substudy from CHOST EU registry. Catheterization and Cardiovascular Interventions, 2017, 89, 47-56.	0.7	28
59	The mechanisms of late scaffold thrombosis. Clinical Hemorheology and Microcirculation, 2017, 67, 343-346.	0.9	12
60	Guided de-escalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention (TROPICAL-ACS): a randomised, open-label, multicentre trial. Lancet, The, 2017, 390, 1747-1757.	6.3	443
61	Twelve-month outcomes after bioresorbable vascular scaffold implantation in patients with acute coronary syndromes. Data from the European Multicenter GHOST-EU Extended Registry. EuroIntervention, 2017, 13, e1104-e1111.	1.4	9
62	Predilation, sizing and post-dilation scoring in patients undergoing everolimus-eluting bioresorbable scaffold implantation for prediction of cardiac adverse events: development and internal validation of the PSP score. EuroIntervention, 2017, 12, 2110-2117.	1.4	114
63	Clinical restenosis and its predictors after implantation of everolimus-eluting bioresorbable vascular scaffolds: results from GABI-R. EuroIntervention, 2017, 13, 1319-1326.	1.4	7
64	Reply. Journal of the American College of Cardiology, 2016, 68, 572-573.	1.2	0
65	Severe Prinzmetal-Type Coronary Artery Spasm Causing Recurrent ST-Segment Elevation and Reversible Obstruction of a Bioresorbable Scaffold. JACC: Cardiovascular Interventions, 2016, 9, 195-197.	1.1	Ο
66	1-Year Outcomes of Everolimus-Eluting Bioresorbable Scaffolds Versus Everolimus-Eluting Stents. JACC: Cardiovascular Interventions, 2016, 9, 440-449.	1.1	23
67	Bioresorbable Coronary ScaffoldÂThrombosis. Journal of the American College of Cardiology, 2016, 67, 921-931.	1.2	302
68	Coronary evaginations and peri-scaffold aneurysms following implantation of bioresorbable scaffolds: incidence, outcome, and optical coherence tomography analysis of possible mechanisms. European Heart Journal, 2016, 37, 2040-2049.	1.0	43
69	Early and midterm outcomes of bioresorbable vascular scaffolds for ostial coronary lesions: insights from the GHOST-EU registry. EuroIntervention, 2016, 12, e550-e556.	1.4	32
70	Impact of postdilatation on performance of bioresorbable vascular scaffolds in patients with acute coronary syndrome compared with everolimus-eluting stents: A propensity score-matched analysis from a multicenter "real-world〕registry. Cardiology Journal, 2016, 23, 374-383.	0.5	22
71	Clinical, Angiographic, Functional, andÂlmaging Outcomes 12 Months AfterÂlmplantation of Drug-Eluting Bioresorbable Vascular Scaffolds in AcuteÂCoronary Syndromes. JACC: Cardiovascular Interventions, 2015, 8, 770-777.	1.1	38
72	The distribution of whole blood viscosity, its determinants and relationship with arterial blood pressure in the community: cross-sectional analysis from the Gutenberg Health Study. Therapeutic Advances in Cardiovascular Disease, 2015, 9, 354-365.	1.0	24

#	Article	IF	CITATIONS
73	Absorb Bioresorbable Vascular Scaffold Versus Everolimus-Eluting Metallic Stent inÂST-Segment Elevation Myocardial Infarction: 1-Year Results of a Propensity Score Matching Comparison. JACC: Cardiovascular Interventions, 2015, 8, 189-197.	1.1	145
74	Two-vessel peri-scaffold staining and malapposition 12 months after bioresorbable scaffold implantation. European Heart Journal, 2015, 36, 50-50.	1.0	4
75	Criteria of the German Society of Cardiology for the establishment of chest pain units: update 2014. Clinical Research in Cardiology, 2015, 104, 918-928.	1.5	40
76	Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications. European Heart Journal, 2015, 36, 2555-2564.	1.0	306
77	Optical Coherence Tomography Findings in Bioresorbable Vascular Scaffolds Thrombosis. Circulation: Cardiovascular Interventions, 2015, 8, e002518.	1.4	47
78	Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention, 2015, 10, 1144-1153.	1.4	411
79	Contemporary practice and technical aspects in coronary intervention with bioresorbable scaffolds: a European perspective. EuroIntervention, 2015, 11, 45-52.	1.4	131
80	Repeated daily dosing with sildenafil provides sustained protection from endothelial dysfunction caused by ischemia and reperfusion: a human in vivo study. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H888-H894.	1.5	18
81	Endothelial dysfunction after stenting and scaffolding of coronary arteries. Clinical Hemorheology and Microcirculation, 2014, 58, 175-181.	0.9	16
82	Immediate, Acute, and Subacute Thrombosis Due to Incomplete ExpansionÂof Bioresorbable Scaffolds. JACC: Cardiovascular Interventions, 2014, 7, 1194-1195.	1.1	16
83	Effects of clopidogrel, prasugrel and ticagrelor on endothelial function, inflammatory and oxidative stress parameters and platelet function in patients undergoing coronary artery stenting for an acute coronary syndrome. A randomised, prospective, controlled study. BMJ Open, 2014, 4, e005268.	0.8	25
84	Antibodies against biologicals and acute coronary syndromes. International Journal of Cardiology, 2014, 171, e103.	0.8	1
85	Absorb bioresorbable scaffold implantation for the treatment of an ostial chronic total occlusion. International Journal of Cardiology, 2014, 172, e377-e378.	0.8	6
86	Anatomic Stabilization and Functional Normalization of a Ruptured Coronary PlaqueÂ12ÂMonths After Implantation ofÂaÂBioresorbable Scaffold. JACC: Cardiovascular Interventions, 2014, 7, e47-e48.	1.1	1
87	Direct Quantification of Cell-Free, Circulating DNA from Unpurified Plasma. PLoS ONE, 2014, 9, e87838.	1.1	115
88	Early outcome after implantation of Absorb bioresorbable drug-eluting scaffolds in patients with acute coronary syndromes. EuroIntervention, 2014, 9, 1036-1041.	1.4	86
89	Acute (but not chronic) smoking paradoxically protects the endothelium from ischemia and reperfusion: insight into the "smoking paradox― Clinical Research in Cardiology, 2013, 102, 387-389.	1.5	8
90	Nitrate therapy and nitrate tolerance in patients with coronary artery disease. Current Opinion in Pharmacology, 2013, 13, 251-259.	1.7	42

#	Article	IF	CITATIONS
91	Endothelium and hemorheology. Clinical Hemorheology and Microcirculation, 2013, 53, 3-10.	0.9	35
92	Chronic therapy with isosorbide-5-mononitrate causes endothelial dysfunction, oxidative stress, and a marked increase in vascular endothelin-1 expression. European Heart Journal, 2013, 34, 3206-3216.	1.0	79
93	Sex differences in noninvasive vascular function in the community. Journal of Hypertension, 2013, 31, 1437-1446.	0.3	14
94	Endothelial function assessment: flow-mediated dilation and constriction provide different and complementary information on the presence of coronary artery disease. European Heart Journal, 2012, 33, 363-371.	1.0	81
95	Pre- and early in-hospital procedures in patients with acute coronary syndromes: first results of the "German chest pain unit registry― Clinical Research in Cardiology, 2012, 101, 983-991.	1.5	42
96	Biological effects of low-dose radiation: of harm and hormesis. European Heart Journal, 2012, 33, 292-295.	1.0	34
97	Evidence of a weak correlation between peripheral endothelial function measures and carotid intima-media thickness. Clinical Hemorheology and Microcirculation, 2012, 52, 235-243.	0.9	0
98	Endothelial function and hemorheological parameters modulate coronary blood flow in patients without significant coronary artery disease. Clinical Hemorheology and Microcirculation, 2012, 52, 255-266.	0.9	16
99	Chronic protection against ischemia and reperfusion-induced endothelial dysfunction during therapy with different organic nitrates. Clinical Research in Cardiology, 2012, 101, 453-459.	1.5	16
100	Establishment and progress of the chest pain unit certification process in Germany and the local experiences of Mainz. European Heart Journal, 2012, 33, 682-6.	1.0	19
101	Viscosity, platelet activation, and hematocrit: Progress in understanding their relationship with clinical and subclinical vascular disease. Clinical Hemorheology and Microcirculation, 2011, 49, 37-42.	0.9	30
102	Evidence of impaired coronary flow reserve and elevated microvascular resistances in a case of recurrent left apical ballooning. International Journal of Cardiology, 2011, 149, e66-e68.	0.8	2
103	A case of coronary hypersensitivity (Kounis) syndrome associated with mid-ventricular ballooning pattern, intracoronary thrombosis and troponin elevation. International Journal of Cardiology, 2011, 149, 377-378.	0.8	13
104	Oxidative stress and endothelial dysfunction: Therapeutic implications. Annals of Medicine, 2011, 43, 259-272.	1.5	104
105	Nitroglycerin-Induced Endothelial Dysfunction and Tolerance Involve Adverse Phosphorylation and <i>S</i> -Glutathionylation of Endothelial Nitric Oxide Synthase. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2223-2231.	1.1	92
106	Nitrate Therapy. Circulation, 2011, 123, 2132-2144.	1.6	165
107	Vascular Dysfunction in Experimental Diabetes Is Improved by Pentaerithrityl Tetranitrate but Not Isosorbide-5-Mononitrate Therapy. Diabetes, 2011, 60, 2608-2616.	0.3	86
108	Flow-mediated constriction: further insight into a new measure of vascular function. European Heart Journal, 2011, 32, 784-787.	1.0	56

#	Article	IF	CITATIONS
109	Noninvasive Vascular Function Measurement in the Community. Circulation: Cardiovascular Imaging, 2011, 4, 371-380.	1.3	167
110	Endothelial functions: Translating theory into clinical application. Clinical Hemorheology and Microcirculation, 2010, 45, 109-115.	0.9	25
111	Tolerance to nitroglycerin-induced preconditioning of the endothelium: a human in vivo study. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H340-H345.	1.5	33
112	Is oxidative stress a therapeutic target in cardiovascular disease?. European Heart Journal, 2010, 31, 2741-2748.	1.0	380
113	Monitoring White Blood Cell Mitochondrial Aldehyde Dehydrogenase Activity: Implications for Nitrate Therapy in Humans. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 63-71.	1.3	27
114	The evolution of the meaning of blood hyperviscosity in cardiovascular physiopathology: Should we reinterpret Poiseuille?. Clinical Hemorheology and Microcirculation, 2009, 42, 1-6.	0.9	36
115	Symptomatic and hemodynamic benefit of pentaerythrityl tetranitrate and hydralazine in a case of congestive heart failure. Clinical Research in Cardiology, 2009, 98, 677-679.	1.5	2
116	Continuous therapy with transdermal nitroglycerin does not affect biomarkers of vascular inflammation and injury in healthy volunteers. Canadian Journal of Physiology and Pharmacology, 2009, 87, 455-459.	0.7	4
117	Non-Hemodynamic Effects of Organic Nitrates and the Distinctive Characteristics of Pentaerithrityl Tetranitrate. American Journal of Cardiovascular Drugs, 2009, 9, 7-15.	1.0	42
118	Conduit Artery Constriction Mediated by Low Flow. Journal of the American College of Cardiology, 2008, 51, 1953-1958.	1.2	143
119	Nitrate-Induced Toxicity and Preconditioning. Journal of the American College of Cardiology, 2008, 52, 251-254.	1.2	55
120	First Evidence for a Crosstalk Between Mitochondrial and NADPH Oxidase-Derived Reactive Oxygen Species in Nitroglycerin-Triggered Vascular Dysfunction. Antioxidants and Redox Signaling, 2008, 10, 1435-1448.	2.5	135
121	The mechanism of nitrate-induced preconditioning. Clinical Hemorheology and Microcirculation, 2008, 39, 191-196.	0.9	19
122	â€~Parachute' accessory mitral leaflet and pulmonary valve stenosis in an asymptomatic 85-year-old man. European Heart Journal, 2008, 29, 223-223.	1.0	3
123	The mechanism of nitrate-induced preconditioning. Clinical Hemorheology and Microcirculation, 2008, 39, 191-6.	0.9	7
124	Pentaerythrityl Tetranitrate and Nitroglycerin, but not Isosorbide Mononitrate, Prevent Endothelial Dysfunction Induced by Ischemia and Reperfusion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1955-1959.	1.1	49
125	Nitroglycerine causes mitochondrial reactive oxygen species production: In vitro mechanistic insights. Canadian Journal of Cardiology, 2007, 23, 990-992.	0.8	19
126	Delayed preconditioning-mimetic actions of exercise or nitroglycerin do not affect haemodynamics and exercise performance in trained or sedentary individuals. Journal of Sports Sciences, 2007, 25, 1393-1401.	1.0	11

#	Article	IF	CITATIONS
127	Once Daily Therapy With Isosorbide-5-Mononitrate Causes Endothelial Dysfunction in Humans. Journal of the American College of Cardiology, 2007, 49, 1289-1295.	1.2	116
128	Nitroglycerin protects the endothelium from ischaemia and reperfusion: human mechanistic insight. British Journal of Clinical Pharmacology, 2007, 64, 145-150.	1.1	57
129	Olive Oil and Ischemic Reactive Hyperemia in Hypercholesterolemic Patients. Journal of the American College of Cardiology, 2006, 48, 414.	1.2	0
130	The effect of ischemia and reperfusion on microvascular function: a human in vivo comparative study with conduit arteries. Clinical Hemorheology and Microcirculation, 2006, 35, 169-73.	0.9	6
131	Correlation analysis between different parameters of conduit artery and microvascular vasodilation. Clinical Hemorheology and Microcirculation, 2006, 35, 509-15.	0.9	21
132	Folic Acid Does Not Limit Endothelial Dysfunction Induced by Ischemia and Reperfusion. Journal of Cardiovascular Pharmacology, 2005, 46, 494-497.	0.8	14
133	Current perspectives. Therapy with organic nitrates: newer ideas, more controversies. Italian Heart Journal: Official Journal of the Italian Federation of Cardiology, 2005, 6, 541-8.	0.1	4
134	Continuous Therapy with Nitroglycerin Impairs Endothelium-Dependent Vasodilation but Does Not Cause Tolerance in Conductance Arteries. Journal of Cardiovascular Pharmacology, 2004, 44, 601-606.	0.8	17
135	Effect of Folic Acid on Nitrate Tolerance in Healthy Volunteers: Differences between Arterial and Venous Circulation. Journal of Cardiovascular Pharmacology, 2003, 41, 185-190.	0.8	19
136	The Puzzle of Nitrate Tolerance. Circulation, 2002, 106, 2404-2408.	1.6	94
137	Nitrate Tolerance. Circulation, 2002, 106, 2510-2513.	1.6	141
138	Effects of nitroglycerin treatment on baroreflex sensitivity andshort-term heart rate variability in humans. Journal of the American College of Cardiology, 2002, 40, 2000-2005.	1.2	44
139	Differential effects of pentaerythritol tetranitrate and nitroglycerin on the development of tolerance and evidence of lipid peroxidation: a human in vivo study. Journal of the American College of Cardiology, 2001, 38, 854-859.	1.2	127
140	Evidence supporting abnormalities in nitric oxide synthase function induced by nitroglycerin in humans. Journal of the American College of Cardiology, 2001, 38, 1096-1101.	1.2	107
141	Tolerance to the Organic Nitrates. Circulation, 2001, 104, 2263-2265.	1.6	16
142	Folic Acid Prevents Nitroglycerin-Induced Nitric Oxide Synthase Dysfunction and Nitrate Tolerance. Circulation, 2001, 104, 1119-1123.	1.6	165