Kentaro K Teramura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8577551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photocatalyst releasing hydrogen from water. Nature, 2006, 440, 295-295.	13.7	2,627
2	Noble-Metal/Cr2O3 Core/Shell Nanoparticles as a Cocatalyst for Photocatalytic Overall Water Splitting. Angewandte Chemie - International Edition, 2006, 45, 7806-7809.	7.2	537
3	A Series of NiM (M = Ru, Rh, and Pd) Bimetallic Catalysts for Effective Lignin Hydrogenolysis in Water. ACS Catalysis, 2014, 4, 1574-1583.	5.5	421
4	Overall Water Splitting on (Ga1-xZnx)(N1-xOx) Solid Solution Photocatalyst:Â Relationship between Physical Properties and Photocatalytic Activity. Journal of Physical Chemistry B, 2005, 109, 20504-20510.	1.2	384
5	Photocatalytic Conversion of CO ₂ in Water over Layered Double Hydroxides. Angewandte Chemie - International Edition, 2012, 51, 8008-8011.	7.2	291
6	Zinc Germanium Oxynitride as a Photocatalyst for Overall Water Splitting under Visible Light. Journal of Physical Chemistry C, 2007, 111, 1042-1048.	1.5	262
7	Selective Amine Oxidation Using Nb ₂ O ₅ Photocatalyst and O ₂ . ACS Catalysis, 2011, 1, 1150-1153.	5.5	258
8	Photocatalytic Reduction of CO2to CO in the Presence of H2or CH4as a Reductant over MgO. Journal of Physical Chemistry B, 2004, 108, 346-354.	1.2	237
9	Roles of Rh/Cr2O3(Core/Shell) Nanoparticles Photodeposited on Visible-Light-Responsive (Ga1-xZnx)(N1-xOx) Solid Solutions in Photocatalytic Overall Water Splitting. Journal of Physical Chemistry C, 2007, 111, 7554-7560.	1.5	230
10	Efficient Overall Water Splitting under Visible-Light Irradiation on (Ga1-xZnx)(N1-xOx) Dispersed with Rhâ^'Cr Mixed-Oxide Nanoparticles:Â Effect of Reaction Conditions on Photocatalytic Activity. Journal of Physical Chemistry B, 2006, 110, 13107-13112.	1.2	218
11	Improvement of photocatalytic activity of (Ga1â^'xZnx)(N1â^'xOx) solid solution for overall water splitting by co-loading Cr and another transition metal. Journal of Catalysis, 2006, 243, 303-308.	3.1	198
12	Two step water splitting into H2 and O2 under visible light by ATaO2N (A = Ca, Sr, Ba) and WO3 with <mml:math <br="" altimg="si1.gif" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>IO</mml:mtext></mml:mrow><mml: Chemical Physics Letters, 2008, 452, 120-123.</mml: </mml:msubsup></mml:mrow></mml:math>	nrow>≺n	194 1ml:mh>3
13	Adsorbed Species of CO ₂ and H ₂ on Ga ₂ O ₃ for the Photocatalytic Reduction of CO ₂ . Journal of Physical Chemistry C, 2010, 114, 8892-8898.	1.5	181
14	Characterization of Rhâ^'Cr Mixed-Oxide Nanoparticles Dispersed on (Ga1-xZnx)(N1-xOx) as a Cocatalyst for Visible-Light-Driven Overall Water Splitting. Journal of Physical Chemistry B, 2006, 110, 13753-13758.	1.2	180
15	The support effect on the size and catalytic activity of thiolated Au ₂₅ nanoclusters as precatalysts. Nanoscale, 2015, 7, 6325-6333.	2.8	142
16	Photocatalytic reduction of CO2 using H2 as reductant over ATaO3 photocatalysts (A = Li, Na, K). Applied Catalysis B: Environmental, 2010, 96, 565-568.	10.8	135
17	Photocatalytic conversion of CO2 in water over Ag-modified La2Ti2O7. Applied Catalysis B: Environmental, 2015, 163, 241-247.	10.8	133
18	Photocatalytic Oxidation of Alcohols over TiO ₂ Covered with Nb ₂ O ₅ . ACS Catalysis, 2012, 2, 175-179.	5.5	131

#	Article	IF	CITATIONS
19	Effect of Metal Ion Addition in a Ni Supported Ga2O3 Photocatalyst on the Photocatalytic Overall Splitting of H2O. Catalysis Letters, 2008, 125, 22-26.	1.4	129
20	A Doping Technique that Suppresses Undesirable H ₂ Evolution Derived from Overall Water Splitting in the Highly Selective Photocatalytic Conversion of CO ₂ in and by Water. Chemistry - A European Journal, 2014, 20, 9906-9909.	1.7	119
21	Modification of (Zn1+xGe)(N2Ox) Solid Solution as a Visible Light Driven Photocatalyst for Overall Water Splitting. Chemistry of Materials, 2007, 19, 2120-2127.	3.2	115
22	Characterization of Ruthenium Oxide Nanocluster as a Cocatalyst with (Ga1-xZnx)(N1-xOx) for Photocatalytic Overall Water Splitting. Journal of Physical Chemistry B, 2005, 109, 21915-21921.	1.2	110
23	Effect of H2 gas as a reductant on photoreduction of CO2 over a Ga2O3 photocatalyst. Chemical Physics Letters, 2008, 467, 191-194.	1.2	109
24	Studies on TiN <i>_x</i> O <i>_y</i> F <i>_z</i> as a Visible-Light-Responsive Photocatalyst. Journal of Physical Chemistry C, 2007, 111, 18264-18270.	1.5	105
25	Highly dispersed noble-metal/chromia (core/shell) nanoparticles as efficient hydrogen evolution promoters for photocatalytic overall water splitting under visible light. Nanoscale, 2009, 1, 106.	2.8	105
26	Highly efficient photocatalytic conversion of CO ₂ into solid CO using H ₂ O as a reductant over Ag-modified ZnGa ₂ O ₄ . Journal of Materials Chemistry A, 2015, 3, 11313-11319.	5.2	103
27	Mechanism of Photooxidation of Alcohol over Nb ₂ O ₅ . Journal of Physical Chemistry C, 2009, 113, 18713-18718.	1.5	102
28	Role of CO2 in dehydrogenation of propane over Cr-based catalysts. Catalysis Today, 2012, 185, 151-156.	2.2	99
29	Photocatalytic Overall Water Splitting on Gallium Nitride Powder. Bulletin of the Chemical Society of Japan, 2007, 80, 1004-1010.	2.0	98
30	Tuning the selectivity toward CO evolution in the photocatalytic conversion of CO ₂ with H ₂ O through the modification of Ag-loaded Ga ₂ O ₃ with a ZnGa ₂ O ₄ layer. Catalysis Science and Technology, 2016, 6, 1025-1032.	2.1	94
31	Modification of Metal Nanoparticles with TiO ₂ and Metalâ^Support Interaction in Photodeposition. ACS Catalysis, 2011, 1, 187-192.	5.5	88
32	Highly selective photocatalytic conversion of CO2 by water over Ag-loaded SrNb2O6 nanorods. Applied Catalysis B: Environmental, 2017, 218, 770-778.	10.8	86
33	Remarkable Improvement of the Photocatalytic Activity of Ga ₂ O ₃ Towards the Overall Splitting of H ₂ O. ChemSusChem, 2011, 4, 181-184.	3.6	85
34	Elucidating strong metal-support interactions in Pt–Sn/SiO2 catalyst and its consequences for dehydrogenation of lower alkanes. Journal of Catalysis, 2018, 365, 277-291.	3.1	84
35	Crystal structure and optical properties of (Ga1â^'xZnx)(N1â^'xOx) oxynitride photocatalyst (x=0.13). Chemical Physics Letters, 2005, 416, 225-228.	1.2	79
36	Overall water splitting using (oxy)nitride photocatalysts. Pure and Applied Chemistry, 2006, 78, 2267-2276.	0.9	76

#	Article	IF	CITATIONS
37	Effect of the chloride ion as a hole scavenger on the photocatalytic conversion of CO ₂ in an aqueous solution over Ni–Al layered double hydroxides. Physical Chemistry Chemical Physics, 2015, 17, 17995-18003.	1.3	76
38	Preparation of (Ga1â^'xZnx) (N1â^'xOx) solid-solution from ZnGa2O4 and ZnO as a photo-catalyst for overall water splitting under visible light. Applied Catalysis A: General, 2007, 327, 114-121.	2.2	73
39	Preparation of Crystallized Mesoporous Ta ₃ N ₅ Assisted by Chemical Vapor Deposition of Tetramethyl Orthosilicate. Chemistry of Materials, 2010, 22, 3854-3861.	3.2	70
40	Simultaneous photodeposition of rhodium–chromiumnanoparticles on a semiconductor powder: structural characterization and application to photocatalytic overall water splitting. Energy and Environmental Science, 2010, 3, 471-478.	15.6	69
41	Bifunctionality of Rh ³⁺ Modifier on TiO ₂ and Working Mechanism of Rh ³⁺ /TiO ₂ Photocatalyst under Irradiation of Visible Light. Journal of Physical Chemistry C, 2013, 117, 11008-11016.	1.5	67
42	Lanthanum–Indium Oxysulfide as a Visible Light Driven Photocatalyst for Water Splitting. Chemistry Letters, 2007, 36, 854-855.	0.7	66
43	Selective photo-oxidation of neat cyclohexane in the liquid phase over V2O5/Al2O3. Journal of Molecular Catalysis A, 2004, 208, 299-305.	4.8	62
44	Photoassisted Selective Catalytic Reduction of NO with Ammonia in the Presence of Oxygen over TiO2. Langmuir, 2003, 19, 1209-1214.	1.6	61
45	Strong metal-support interaction between Pt and SiO ₂ following high-temperature reduction: a catalytic interface for propane dehydrogenation. Chemical Communications, 2017, 53, 6937-6940.	2.2	61
46	TiO2/SiO2 photocatalysts at low levels of loading: preparation, structure and photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 277-281.	2.0	60
47	Reaction Mechanism of Selective Photooxidation of Amines over Niobium Oxide: Visible-Light-Induced Electron Transfer between Adsorbed Amine and Nb2O5. Journal of Physical Chemistry C, 2013, 117, 442-450.	1.5	59
48	Sublimation-Induced Sulfur Vacancies in MoS ₂ Catalyst for One-Pot Synthesis of Secondary Amines. ACS Catalysis, 2019, 9, 7967-7975.	5.5	57
49	Photocatalytic Conversion of CO2 by H2O over Ag-Loaded SrO-Modified Ta2O5. Bulletin of the Chemical Society of Japan, 2015, 88, 431-437.	2.0	56
50	Effective Driving of Ag-Loaded and Al-Doped SrTiO ₃ under Irradiation at λ > 300 nm for the Photocatalytic Conversion of CO ₂ by H ₂ O. ACS Applied Energy Materials, 2020, 3, 1468-1475.	2.5	56
51	A titanium-based oxysulfide photocatalyst: La5Ti2MS5O7 (M = Ag, Cu) for water reduction and oxidation. Physical Chemistry Chemical Physics, 2012, 14, 15475.	1.3	55
52	Dynamic Behavior of Rh Species in Rh/Al ₂ O ₃ Model Catalyst during Three-Way Catalytic Reaction: An <i>Operando</i> X-ray Absorption Spectroscopy Study. Journal of the American Chemical Society, 2018, 140, 176-184.	6.6	55
53	Photo-oxidation of cyclohexane over alumina-supported vanadium oxide catalyst. Journal of Molecular Catalysis A, 2001, 165, 299-301.	4.8	54
54	Which is an Intermediate Species for Photocatalytic Conversion of CO ₂ by H ₂ O as the Electron Donor: CO ₂ Molecule, Carbonic Acid, Bicarbonate, or Carbonate Ions?. Journal of Physical Chemistry C, 2017, 121, 8711-8721.	1.5	54

#	Article	IF	CITATIONS
55	Development of Cocatalysts for Photocatalytic Overall Water Splitting on (Ga1â^'x Zn x)(N1â^'x O x) Solid Solution. Catalysis Surveys From Asia, 2007, 11, 145-157.	1.0	53
56	Modification of Ga ₂ O ₃ by an Ag–Cr core–shell cocatalyst enhances photocatalytic CO evolution for the conversion of CO ₂ by H ₂ O. Chemical Communications, 2018, 54, 1053-1056.	2.2	53
57	Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass. Scientific Reports, 2013, 3, 3541.	1.6	52
58	Effect of reduction method on the activity of Pt–Sn/SiO2 for dehydrogenation of propane. Catalysis Today, 2014, 232, 33-39.	2.2	52
59	Solvent-free aerobic alcohol oxidation using Cu/Nb2O5: Green and highly selective photocatalytic system. Applied Catalysis B: Environmental, 2011, 110, 216-220.	10.8	51
60	Dehydrogenation of Propane over Silica‣upported Platinum–Tin Catalysts Prepared by Direct Reduction: Effects of Tin/Platinum Ratio and Reduction Temperature. ChemCatChem, 2014, 6, 2680-2691.	1.8	49
61	Visible Light Absorbed NH ₂ Species Derived from NH ₃ Adsorbed on TiO ₂ for Photoassisted Selective Catalytic Reduction. Journal of Physical Chemistry C, 2007, 111, 14189-14197.	1.5	48
62	Popping of Graphite Oxide: Application in Preparing Metal Nanoparticle Catalysts. Advanced Materials, 2015, 27, 4688-4694.	11.1	48
63	Reaction Mechanism of Selective Photooxidation of Hydrocarbons over Nb ₂ O ₅ . Journal of Physical Chemistry C, 2011, 115, 19320-19327.	1.5	46
64	In Situ Observation of Nucleation and Growth Process of Gold Nanoparticles by Quick XAFS Spectroscopy. ChemPhysChem, 2011, 12, 127-131.	1.0	46
65	Insights into the Formation Mechanism of Rhodium Nanocubes. Journal of Physical Chemistry C, 2012, 116, 15076-15086.	1.5	46
66	A ZnTa ₂ O ₆ photocatalyst synthesized via solid state reaction for conversion of CO ₂ into CO in water. Catalysis Science and Technology, 2016, 6, 4978-4985.	2.1	46
67	One-phase synthesis of small gold nanoparticles coated by a horizontal porphyrin monolayer. Chemical Communications, 2008, , 6300.	2.2	45
68	Effects of reaction temperature on the photocatalytic activity of photo-SCR of NO with NH3 over a TiO2 photocatalyst. Catalysis Science and Technology, 2013, 3, 1771.	2.1	45
69	Development of the efficient TiO2 photocatalyst in photoassisted selective catalytic reduction of NO with NH3. Catalysis Today, 2006, 111, 266-270.	2.2	44
70	Local Structure and La L ₁ and L ₃ -Edge XANES Spectra of Lanthanum Complex Oxides. Inorganic Chemistry, 2014, 53, 6048-6053.	1.9	44
71	Dynamic in situ observation of automotive catalysts for emission control using X-ray absorption fine structure. Catalysis Today, 2009, 145, 279-287.	2.2	43
72	Incarceration of (PdO) _{<i>n</i>} and Pd _{<i>n</i>} Clusters by Cageâ€Templated Synthesis of Hollow Silica Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 5893-5896.	7.2	43

KENTARO K TERAMURA

#	Article	IF	CITATIONS
73	Photocatalytic conversion of CO2 in an aqueous solution using various kinds of layered double hydroxides. Catalysis Today, 2015, 251, 140-144.	2.2	43
74	Oxygen storage capacity of Sr ₃ Fe ₂ O _{7â^Î} having high structural stability. Journal of Materials Chemistry A, 2015, 3, 13540-13545.	5.2	43
75	Enhancement of CO Evolution by Modification of Ga ₂ O ₃ with Rare-Earth Elements for the Photocatalytic Conversion of CO ₂ by H ₂ O. Langmuir, 2017, 33, 13929-13935.	1.6	43
76	A nanoLDH catalyst with high CO ₂ adsorption capability for photo-catalytic reduction. Journal of Materials Chemistry A, 2018, 6, 9684-9690.	5.2	43
77	Promotion effect of tungsten oxide on photo-assisted selective catalytic reduction of NO with NH3 over TiO2. Applied Catalysis B: Environmental, 2008, 83, 123-130.	10.8	42
78	The Effects of Preparation Conditions for a BaNbO ₂ N Photocatalyst on Its Physical Properties. ChemSusChem, 2014, 7, 2016-2021.	3.6	42
79	Rh nanoparticles with NiO x surface decoration for selective hydrogenolysis of C O bond over arene hydrogenation. Journal of Molecular Catalysis A, 2016, 422, 188-197.	4.8	42
80	BrÃ,nsted acid generation of alumina-supported molybdenum oxide calcined at high temperatures: Characterization by acid-catalyzed reactions and spectroscopic methods. Journal of Molecular Catalysis A, 2013, 371, 21-28.	4.8	41
81	In Situ Time-Resolved Energy-Dispersive XAFS Study on Photodeposition of Rh Particles on a TiO ₂ Photocatalyst. Journal of Physical Chemistry C, 2008, 112, 8495-8498.	1.5	39
82	Direct deposition of nanoparticulate rhodium–chromium mixed-oxides on a semiconductor powder by band-gap irradiation. Journal of Materials Chemistry, 2008, 18, 3539.	6.7	38
83	CO ₂ capture, storage, and conversion using a praseodymium-modified Ga ₂ O ₃ photocatalyst. Journal of Materials Chemistry A, 2017, 5, 19351-19357.	5.2	38
84	Necessary and sufficient conditions for the successful three-phase photocatalytic reduction of CO ₂ by H ₂ O over heterogeneous photocatalysts. Physical Chemistry Chemical Physics, 2018, 20, 8423-8431.	1.3	38
85	Effect of Highâ€Temperature Calcination on the Generation of BrÃ,nsted Acid Sites on WO ₃ /Al ₂ O ₃ . ChemCatChem, 2014, 6, 2011-2020.	1.8	37
86	Correlation between preparation conditions and the photoluminescence properties of Sn ²⁺ centers in ZnO–P ₂ O ₅ glasses. Journal of Materials Chemistry C, 2014, 2, 2137-2143.	2.7	37
87	Selective photo-oxidation of various hydrocarbons in the liquid phase over VO/AlO. Catalysis Today, 2004, 96, 205-209.	2.2	36
88	Structural Analysis of Group V, VI, and VII Metal Compounds by XAFS. Journal of Physical Chemistry C, 2011, 115, 23653-23663.	1.5	36
89	BrÃ _, nsted Acid Property of Alumina-Supported Niobium Oxide Calcined at High Temperatures: Characterization by Acid-Catalyzed Reactions and Spectroscopic Methods. Journal of Physical Chemistry C, 2012, 116, 11615-11625.	1.5	36
90	Unique structural characteristics of tin hydroxide nanoparticles-embedded montmorillonite (Sn-Mont) demonstrating efficient acid catalysis for various organic reactions. Microporous and Mesoporous Materials, 2014, 198, 129-138.	2.2	36

#	Article	IF	CITATIONS
91	Investigation of the electrochemical and photoelectrochemical properties of Ni–Al LDH photocatalysts. Physical Chemistry Chemical Physics, 2016, 18, 13811-13819.	1.3	36
92	Visible-Light Selective Photooxidation of Aromatic Hydrocarbons via Ligand-to-Metal Charge Transfer Transition on Nb ₂ O ₅ . Journal of Physical Chemistry C, 2017, 121, 22854-22861.	1.5	36
93	BrÃnsted Acid Generation over Alumina-Supported Niobia by Calcination at 1173ÂK. Catalysis Letters, 2009, 129, 383-386.	1.4	35
94	A unique photo-activation mechanism by "in situ doping―for photo-assisted selective NO reduction with ammonia over TiO2 and photooxidation of alcohols over Nb2O5. Catalysis Science and Technology, 2011, 1, 541.	2.1	35
95	Preparation of transition metal-containing layered double hydroxides and application to the photocatalytic conversion of CO2 in water. Journal of CO2 Utilization, 2016, 15, 6-14.	3.3	35
96	Drastic improvement in the photocatalytic activity of Ga ₂ O ₃ modified with Mg–Al layered double hydroxide for the conversion of CO ₂ in water. Sustainable Energy and Fuels, 2017, 1, 1740-1747.	2.5	35
97	Title is missing!. Topics in Catalysis, 2002, 18, 113-118.	1.3	34
98	Fabrication of well-shaped Sr2KTa5O15 nanorods with a tetragonal tungsten bronze structure by a flux method for artificial photosynthesis. Applied Catalysis B: Environmental, 2016, 199, 272-281.	10.8	34
99	Dual Ag/Co cocatalyst synergism for the highly effective photocatalytic conversion of CO ₂ by H ₂ O over Al-SrTiO ₃ . Chemical Science, 2021, 12, 4940-4948.	3.7	34
100	Photoassisted NO reduction with NH3 over TiO2 photocatalyst. Chemical Communications, 2002, , 2742-2743.	2.2	33
101	Visible-light-assisted selective catalytic reduction of NO with NH ₃ on porphyrin derivative-modified TiO ₂ photocatalysts. Catalysis Science and Technology, 2015, 5, 556-561.	2.1	33
102	Photocatalytic conversion of CO2 in water using fluorinated layered double hydroxides as photocatalysts. Applied Catalysis A: General, 2016, 521, 160-167.	2.2	32
103	Effect of Thickness of Chromium Hydroxide Layer on Ag Cocatalyst Surface for Highly Selective Photocatalytic Conversion of CO ₂ by H ₂ O. ACS Sustainable Chemistry and Engineering, 2019, 7, 2083-2090.	3.2	32
104	Formation mechanism of metal nanoparticles studied by XAFS spectroscopy and effective synthesis of small metal nanoparticles. Catalysis Today, 2012, 183, 108-118.	2.2	31
105	Role of lattice oxygen and oxygen vacancy sites in platinum group metal catalysts supported on Sr ₃ Fe ₂ O _{7â[^]î} for NO-selective reduction. Catalysis Science and Technology, 2018, 8, 147-153.	2.1	29
106	Isolated Platinum Atoms in Ni/γ-Al ₂ O ₃ for Selective Hydrogenation of CO ₂ toward CH ₄ . Journal of Physical Chemistry C, 2019, 123, 23446-23454.	1.5	29
107	Investigation of the Formation Process of Photodeposited Rh Nanoparticles on TiO ₂ by In Situ Time-Resolved Energy-Dispersive XAFS Analysis. Langmuir, 2010, 26, 13907-13912.	1.6	28
108	Highly Active and Stable Pt–Sn/SBA-15 Catalyst Prepared by Direct Reduction for Ethylbenzene Dehydrogenation: Effects of Sn Addition. Industrial & Engineering Chemistry Research, 2017, 56, 7160-7172.	1.8	28

KENTARO K TERAMURA

#	Article	IF	CITATIONS
109	Novel catalytic behavior of Cu/Al2O3 catalyst against daily start-up and shut-down (DSS)-like operation in the water gas shift reaction. Applied Catalysis A: General, 2010, 387, 185-194.	2.2	27
110	Enhanced oxygen-release/storage properties of Pd-loaded Sr ₃ Fe ₂ O _{7â~δ} . Physical Chemistry Chemical Physics, 2017, 19, 14107-14113.	1.3	27
111	Oxygen Storage Property and Chemical Stability of SrFe _{1a€"<i>x</i>} Ti _{<i>x</i>} O _{3â^î^} with Robust Perovskite Structure. Journal of Physical Chemistry C, 2017, 121, 19358-19364.	1.5	26
112	Enhanced CO evolution for photocatalytic conversion of CO2 by H2O over Ca modified Ga2O3. Communications Chemistry, 2020, 3, .	2.0	26
113	Optimized Synthesis of Agâ€Modified Alâ€Doped SrTiO ₃ Photocatalyst for the Conversion of CO ₂ Using H ₂ O as an Electron Donor. ChemistrySelect, 2020, 5, 8779-8786.	0.7	26
114	Highly Selective Photocatalytic Conversion of Carbon Dioxide by Water over Al-SrTiO ₃ Photocatalyst Modified with Silver–Metal Dual Cocatalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 9327-9335.	3.2	26
115	Zinc and Titanium Spinel Oxynitride (ZnxTiOyNz) as a d0–d10Complex Photocatalyst with Visible Light Activity. Chemistry Letters, 2007, 36, 558-559.	0.7	25
116	Visibleâ€Lightâ€Assisted Selective Catalytic Reduction of Nitric Oxide with Ammonia over Dyeâ€Modified Titania Photocatalysts. ChemCatChem, 2015, 7, 1818-1825.	1.8	25
117	Crystal Structure Analysis of (Ga _{0.93} Zn _{0.07})(N _{0.90} O _{0.10}) Oxynitride Photocatalyst. Materials Transactions, 2006, 47, 295-297.	0.4	24
118	An in situ quick XAFS spectroscopy study on the formation mechanism of small gold nanoparticles supported by porphyrin-cored tetradentate passivants. Physical Chemistry Chemical Physics, 2011, 13, 11128.	1.3	24
119	Reaction Mechanism and the Role of Copper in the Photooxidation of Alcohol over Cu/Nb ₂ O ₅ . ChemPhysChem, 2011, 12, 2823-2830.	1.0	24
120	Flux method fabrication of potassium rare-earth tantalates for CO2 photoreduction using H2O as an electron donor. Catalysis Today, 2018, 300, 173-182.	2.2	24
121	Ni–Pt Alloy Nanoparticles with Isolated Pt Atoms and Their Cooperative Neighboring Ni Atoms for Selective Hydrogenation of CO ₂ Toward CH ₄ Evolution: <i>In Situ</i> and Transient Fourier Transform Infrared Studies. ACS Applied Nano Materials, 2020, 3, 9633-9644.	2.4	24
122	Study of the Reaction Mechanism of Selective Photooxidation of Cyclohexane over V ₂ O ₅ /Al ₂ O ₃ . Journal of Physical Chemistry C, 2009, 113, 17018-17024.	1.5	23
123	Selective reduction of NO over Cu/Al2O3: Enhanced catalytic activity by infinitesimal loading of Rh on Cu/Al2O3. Molecular Catalysis, 2017, 442, 74-82.	1.0	23
124	NOx Oxidation and Storage Properties of a Ruddlesden–Popper-Type Sr3Fe2O7â^îî-Layered Perovskite Catalyst. ACS Applied Materials & Interfaces, 2019, 11, 26985-26993.	4.0	23
125	In Situ Time-Resolved Energy-Dispersive XAFS Study on Reduction Behavior of Pt Supported on TiO2 and Al2O3. Catalysis Letters, 2009, 131, 413-418.	1.4	22
126	In Situ Au L3 and L2 edge XANES spectral analysis during growth of thiol protected gold nanoparticles for the study on particle size dependent electronic properties. Chemical Physics Letters, 2011, 507, 105-110.	1.2	22

KENTARO K TERAMURA

#	Article	IF	CITATIONS
127	Synthesis of niobium oxide nanoparticles with plate morphology utilizing solvothermal reaction and their performances for selective photooxidation. Applied Catalysis B: Environmental, 2016, 182, 469-475.	10.8	22
128	Development of Rh-Doped Ga ₂ O ₃ Photocatalysts for Reduction of CO ₂ by H ₂ O as an Electron Donor at a More than 300 nm Wavelength. Journal of Physical Chemistry C, 2018, 122, 21132-21139.	1.5	22
129	High sustainability of Cu–Al–Ox catalysts against daily start-up and shut-down (DSS)-like operation in the water–gas shift reaction. Catalysis Communications, 2009, 10, 1057-1061.	1.6	21
130	Effects of SO ₂ on selective catalytic reduction of NO with NH ₃ over a TiO ₂ photocatalyst. Science and Technology of Advanced Materials, 2015, 16, 024901.	2.8	21
131	Striking Oxygen-Release/Storage Properties of Fe-Site-Substituted Sr ₃ Fe ₂ O _{7â^îî} . Journal of Physical Chemistry C, 2018, 122, 11186-11193.	1.5	21
132	Photoactivation mechanism of orthovanadate-like (V=O)O3 species. Chemical Physics Letters, 2008, 460, 478-481.	1.2	20
133	In situ time-resolved DXAFS study of Rh nanoparticle formation mechanism in ethylene glycol at elevated temperature. Physical Chemistry Chemical Physics, 2012, 14, 2983.	1.3	20
134	EPR Study of Photoinduced Electron Transfer between Adsorbent and Adsorbed Species in Photo-SCR with NH3. Chemistry Letters, 2003, 32, 1184-1185.	0.7	19
135	Correlation between the Oxidation State of Copper and the Photocatalytic Activity of Cu/Nb ₂ O ₅ . Journal of Physical Chemistry C, 2012, 116, 12181-12186.	1.5	19
136	Low-temperature NO trapping on alkali or alkaline earth metal modified TiO2 photocatalyst. Catalysis Today, 2019, 332, 76-82.	2.2	19
137	Selective Aerobic Oxidation of Primary Alcohols to Aldehydes over Nb ₂ O ₅ Photocatalyst with Visible Light. ChemPhysChem, 2014, 15, 2665-2667.	1.0	18
138	Selective Catalytic Reduction of NO by NH ₃ over Photocatalysts (Photo CR): Mechanistic Investigations and Developments. Chemical Record, 2016, 16, 2268-2277.	2.9	18
139	Zn-based metal–organic frameworks as sacrificial agents for the synthesis of Zn/ZSM-5 catalysts and their applications in the aromatization of methanol. Catalysis Today, 2021, 375, 70-78.	2.2	18
140	Surface Ba species effective for photoassisted NO storage over Ba-modified TiO2 photocatalysts. Applied Catalysis B: Environmental, 2016, 180, 283-290.	10.8	17
141	Role of Bicarbonate Ions in Aqueous Solution as a Carbon Source for Photocatalytic Conversion of CO ₂ into CO. ACS Applied Energy Materials, 2019, 2, 5397-5405.	2.5	16
142	Self-regeneration of a Ni–Cu alloy catalyst during a three-way catalytic reaction. Physical Chemistry Chemical Physics, 2019, 21, 18816-18822.	1.3	16
143	Rational Design of a Molecular Nanocatalystâ€Stabilizer that Enhances both Catalytic Activity and Nanoparticle Stability. ChemCatChem, 2012, 4, 1907-1910.	1.8	15
144	Local Structure of Pr, Nd, and Sm Complex Oxides and Their X-ray Absorption Near Edge Structure Spectra. Journal of Physical Chemistry C, 2014, 118, 20881-20888.	1.5	15

#	Article	IF	CITATIONS
145	Characterization of Cu Nanoparticles on TiO2 Photocatalysts Fabricated by Electroless Plating Method. Topics in Catalysis, 2014, 57, 975-983.	1.3	15
146	Noble-Metal-Free NO _{<i>x</i>} Storage over Ba-Modified TiO ₂ Photocatalysts under UV-Light Irradiation at Low Temperatures. ACS Catalysis, 2015, 5, 2939-2943.	5.5	15
147	Recent progress in photocatalytic conversion of carbon dioxide over gallium oxide and its nanocomposites. Current Opinion in Chemical Engineering, 2018, 20, 114-121.	3.8	15
148	Fe-Modified CuNi Alloy Catalyst as a Nonprecious Metal Catalyst for Three-Way Catalysis. Industrial & Engineering Chemistry Research, 2020, 59, 19907-19917.	1.8	15
149	Imparting CO ₂ reduction selectivity to ZnGa ₂ O ₄ photocatalysts by crystallization from hetero nano assembly of amorphous-like metal hydroxides. RSC Advances, 2020, 10, 8066-8073.	1.7	15
150	Photoassisted selective catalytic reduction of NO with ammonia in the presence of oxygen at low temperature. Physical Chemistry Chemical Physics, 2000, 2, 2681-2682.	1.3	14
151	Generation of BrÃ,nsted Acid Over Alumina-Supported Niobia Calcined at High Temperatures. Topics in Catalysis, 2010, 53, 672-677.	1.3	14
152	Local Structure and L1- and L3-Edge X-ray Absorption Near Edge Structure of Late Lanthanide Elements (Ho, Er, Yb) in Their Complex Oxides. Journal of Physical Chemistry C, 2015, 119, 8070-8077.	1.5	14
153	The importance of direct reduction in the synthesis of highly active Pt–Sn/SBA-15 for <i>n</i> -butane dehydrogenation. Catalysis Science and Technology, 2019, 9, 947-956.	2.1	14
154	In situ observation of the dynamic behavior of Cu–Al–Ox catalysts for water gas shift reaction during daily start-up and shut-down (DSS)-like operation. Catalysis Science and Technology, 2012, 2, 1685.	2.1	13
155	Characterization of Thermally Stable BrÃ,nsted Acid Sites on Aluminaâ€5upported Niobium Oxide after Calcination at High Temperatures. ChemPhysChem, 2013, 14, 2560-2569.	1.0	13
156	Promoter effect of Pd species on Mn oxide catalysts supported on rare-earth-iron mixed oxide. Catalysis Science and Technology, 2016, 6, 7868-7874.	2.1	13
157	Pd/SrFe _{1–<i>x</i>} Ti _{<i>x</i>} O _{3â~î^} as Environmental Catalyst: Purification of Automotive Exhaust Gases. ACS Applied Materials & Interfaces, 2018, 10, 22182-22189.	4.0	13
158	Characterization of Spinel Zinc Titanium Nitride Oxide as a Visible Light Driven Photocatalyst. Bulletin of the Chemical Society of Japan, 2008, 81, 1647-1656.	2.0	12
159	Structural analysis of group V, VI, VII metal compounds by XAFS and DFT calculation. Journal of Physics: Conference Series, 2009, 190, 012073.	0.3	12
160	Photo-Induced Electron Transfer Between a Reactant Molecule and Semiconductor Photocatalyst: In Situ Doping. Catalysis Surveys From Asia, 2011, 15, 240-258.	1.0	12
161	Generation of BrÃ,nsted acid sites on Al2O3-supported Ta2O5 calcined at high temperatures. Catalysis Today, 2012, 192, 189-196.	2.2	12
162	Efficient oxygen storage property of Sr–Fe mixed oxide as automotive catalyst support. Journal of Materials Chemistry A, 2019, 7, 1013-1021.	5.2	12

#	Article	IF	CITATIONS
163	Dynamics of the Lattice Oxygen in a Ruddlesden–Popper-type Sr3Fe2O7â^î́r Catalyst during NO Oxidation. ACS Catalysis, 2020, 10, 2528-2537.	5.5	12
164	Sodium Cation Substitution in Sr ₂ KTa ₅ O ₁₅ toward Enhancement of Photocatalytic Conversion of CO ₂ Using H ₂ O as an Electron Donor. ACS Omega, 2017, 2, 8187-8197.	1.6	11
165	Excellent Catalytic Activity of a Pdâ€Promoted MnO x Catalyst for Purifying Automotive Exhaust Gases. ChemCatChem, 2020, 12, 4276-4280.	1.8	11
166	A feasibility study of "range-extended―EXAFS measurement at the Pt L ₃ -edge of Pt/Al ₂ O ₃ in the presence of Au ₂ O ₃ . Journal of Analytical Atomic Spectrometry, 2018, 33, 84-89.	1.6	10
167	Low-temperature NO oxidation using lattice oxygen in Fe-site substituted SrFeO3â^´Î´. Physical Chemistry Chemical Physics, 2020, 22, 24181-24190.	1.3	10
168	Effect of Zn in Ag-Loaded Zn-Modified ZnTa ₂ O ₆ for Photocatalytic Conversion of CO ₂ by H ₂ O. Journal of Physical Chemistry C, 2021, 125, 1304-1312.	1.5	10
169	Photoactivation of Molecular Oxygen by an Iron(III) Porphyrin with a Magnesium Aluminum Layered Double Hydroxide for the Aerobic Epoxidation of Cyclohexene. ChemCatChem, 2014, 6, 2276-2281.	1.8	9
170	Acid property of Nb2O5/Al2O3 prepared by impregnation method by using niobium oxalate solution: Effect of pH on the structure and acid property. Catalysis Today, 2014, 226, 97-102.	2.2	9
171	Efficient photocatalytic carbon monoxide production from ammonia and carbon dioxide by the aid of artificial photosynthesis. Chemical Science, 2017, 8, 5797-5801.	3.7	9
172	CO and C3H6 oxidation over platinum-group metal (PGM) catalysts supported on Mn-modified hexagonal YbFeO3. Catalysis Today, 2019, 332, 183-188.	2.2	9
173	Important Role of Strontium Atom on the Surface of Sr ₂ KTa ₅ O ₁₅ with a Tetragonal Tungsten Bronze Structure to Improve Adsorption of CO ₂ for Photocatalytic Conversion of CO ₂ by H ₂ O. ACS Applied Materials & amp; Interfaces, 2019, 11, 37875-37884.	4.0	9
174	Effect of Surface Reforming via O ₃ Treatment on the Electrochemical CO ₂ Reduction Activity of a Ag Cathode. ACS Applied Energy Materials, 2020, 3, 6552-6560.	2.5	9
175	Real-time observation of the effect of oxygen storage materials on Pd-based three-way catalysts under ideal automobile exhaust conditions: an <i>operando</i> study. Catalysis Science and Technology, 2021, 11, 6182-6190.	2.1	9
176	Strong Metal–Support Interaction in Pd/Ca2AlMnO5+δ: Catalytic NO Reduction over Mn-Doped CaO Shell. ACS Catalysis, 2021, 11, 7996-8003.	5.5	9
177	NO _{<i>x</i>} Storage Performance at Low Temperature over Platinum Group Metal-Free SrTiO ₃ -Based Material. ACS Applied Materials & Interfaces, 2021, 13, 29482-29490.	4.0	9
178	Shift of active sites via in-situ photodeposition of chromate achieving highly selective photocatalytic conversion of CO2 by H2O over ZnTa2O6. Applied Catalysis B: Environmental, 2021, 298, 120508.	10.8	9
179	Generation of BrÃ,nsted Acid Sites on Alumina-supported Tantalum(V) Oxide Calcined at 1223 K. Chemistry Letters, 2011, 40, 1332-1334.	0.7	8
180	Photocatalytic Conversion of Carbon Dioxide over A ₂ BTa ₅ O ₁₅ (A) Tj ETQ	q0 0 0 rgB 3.2	T /Overlock 8

Engineering, 2018, 6, 8247-8255.

#	Article	IF	CITATIONS
181	Local Structure and L ₁ - and L ₃ -Edge X-ray Absorption Near Edge Structures of Middle Lanthanoid Elements (Eu, Gd, Tb, and Dy) in Their Complex Oxides. Inorganic Chemistry, 2021, 60, 9359-9367.	1.9	8
182	Photocatalytic Aerobic Epoxidation of Alkenes under Visible Light Irradiation by an Iron(III) Porphyrin with Mg–Al Hydrotalcite Anionic Clay. Chemistry Letters, 2009, 38, 1098-1099.	0.7	7
183	Effect of Cr Species on Photocatalytic Stability during the Conversion of CO ₂ by H ₂ O. Journal of Physical Chemistry C, 2019, 123, 2894-2899.	1.5	7
184	Formation of CH ₄ at the Metal‧upport Interface of Pt/Al ₂ O ₃ During Hydrogenation of CO ₂ : <i>Operando</i> XASâ€DRIFTS Study. ChemCatChem, 2022, 14, .	1.8	7
185	Oxygen Storage Capacity of Co-Doped SrTiO ₃ with High Redox Performance. Journal of Physical Chemistry C, 2022, 126, 4415-4422.	1.5	7
186	Synthesis and Catalytic Performance of Organic–Inorganic Hybrid Mesoporous Material Having Basic Nanospace. Catalysis Letters, 2010, 140, 121-126.	1.4	6
187	A theoretical approach to La L1-edge XANES spectra of La complex oxides and their local configuration. Journal of Chemical Physics, 2015, 142, 164507.	1.2	6
188	Effect of a crystalline phase of TiO2 photocatalysts on the photodeposition of Rh metal nanoparticles. Catalysis Today, 2014, 232, 165-170.	2.2	5
189	Monolayer Tantalum Oxide on Mesoporous Silica Substrate. ChemistrySelect, 2016, 1, 3124-3131.	0.7	5
190	Local Structure Study of Lanthanide Elements by Xâ€Ray Absorption Near Edge Structure Spectroscopy. Chemical Record, 2019, 19, 1420-1431.	2.9	5
191	Self-Regeneration Process of Ni–Cu Alloy Catalysts during a Three-Way Catalytic Reaction—An <i>Operando</i> Study. ACS Applied Materials & Interfaces, 2020, 12, 55994-56003.	4.0	5
192	Photoelectrochemical investigation of the role of surface-modified Yb species in the photocatalytic conversion of CO2 by H2O over Ga2O3 photocatalysts. Catalysis Today, 2020, 352, 18-26.	2.2	5
193	Ï€ Back-Bonding of Iron(II) Complexes Supported by Tris(pyrid-2-ylmethyl)amine and Its Nitro-Substituted Derivatives. Journal of Physical Chemistry A, 2011, 115, 13589-13595.	1.1	4
194	Oxygen Release and Storage Property of Fe–Al Spinel Compounds: A Three-Way Catalytic Reaction over a Supported Rh Catalyst. ACS Applied Materials & Interfaces, 2021, 13, 24615-24623.	4.0	4
195	Development of Zinc Hydroxide as an Abundant and Universal Cocatalyst for the Selective Photocatalytic Conversion of CO 2 by H 2 O. ChemCatChem, 2021, 13, 4313.	1.8	4
196	Hydrogenation of lower alkenes and conjugated diene catalyzed by Ga2O3. Chemical Physics Letters, 2012, 539-540, 79-82.	1.2	3
197	Identification of Active Ba Species on TiO ₂ Photocatalyst for NO <i>_x</i> Trapping. Chemistry Letters, 2020, 49, 859-862.	0.7	3
198	In situ time-resolved XAS study on metal-support-interaction-induced morphology change of PtO2 nanoparticles supported on \hat{I}^3 -Al2O3 under H2 reduction. Catalysis Today, 2022, , .	2.2	3

#	Article	IF	CITATIONS
199	Model building of metal oxide surfaces and vibronic coupling density as a reactivity index: Regioselectivity of CO2 adsorption on Ag-loaded Ga2O3. Chemical Physics Letters, 2019, 715, 239-243.	1.2	2
200	A theoretical investigation into the role of catalyst support and regioselectivity of molecular adsorption on a metal oxide surface: NO reduction on Cu/γ-alumina. Physical Chemistry Chemical Physics, 2021, 23, 2575-2585.	1.3	2
201	Energy-Dispersive XAFS Study on Reduction Behavior of Pt Supported on TiO2 and Al2O3. AlP Conference Proceedings, 2007, , .	0.3	1
202	Inhibition of Ammonia Poisoning by Addition of Platinum to Ru/αâ€Al ₂ O ₃ for Preferential CO Oxidation in Fuel Cells. ChemSusChem, 2014, 7, 3264-3267.	3.6	1
203	Visibleâ€Lightâ€Assisted Selective Catalytic Reduction of Nitric Oxide with Ammonia over Dyeâ€Modified Titania Photocatalysts. ChemCatChem, 2015, 7, 1723-1723.	1.8	1
204	Application of Layered Double Hydroxides (LDHs) in Photocatalysis. Nanostructure Science and Technology, 2016, , 313-323.	0.1	1
205	Regioselectivity of H ₂ Adsorption on Ga ₂ O ₃ Surface Based on Vibronic Coupling Density Analysis. Journal of Computer Chemistry Japan, 2018, 17, 138-141.	0.0	1
206	Photocatalytic conversion of CO2 by H2O over heterogeneous photocatalysts. , 2020, , 179-190.		1
207	Effect of the in situ addition of chromate ions on H2 evolution during the photocatalytic conversion of CO2 using H2O as the electron donor. Catalysis Today, 2023, 410, 273-281.	2.2	1
208	Preface: Photocatalysis. Applied Catalysis A: General, 2016, 521, 1.	2.2	0
209	Preparation of Ag-Loaded Ga ₂ O ₃ Particles by the Ultrasonic Reduction Method and their Photocatalytic Activities for CO ₂ Reduction. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2021, 68, 93-98.	0.1	0
210	(Invited) Catalyst Design and Development for Highly Selective Photocatalytic Conversion of CO2 By H2o As an Electron Donor. ECS Meeting Abstracts, 2021, MA2021-01, 715-715.	0.0	0
211	(Invited) Photocatalytic Conversion of CO2 By H2o As an Electron Donor over Ag/ZnGa2O4/Ga2O3. ECS Meeting Abstracts, 2015, , .	0.0	0
212	Dynamic behavior of Pd/Ca2AlMnO5+δ for purifying automotive exhaust gases under fluctuating oxygen concentration. Catalysis Today, 2022, , .	2.2	0