
Davide Mercadante

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/857727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasticity of an Ultrafast Interaction between Nucleoporins and Nuclear Transport Receptors. Cell, 2015, 163, 734-745.	28.9	255
2	Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6342-E6351.	7.1	195
3	Bovine β-Lactoglobulin Is Dimeric Under Imitative Physiological Conditions: Dissociation Equilibrium and Rate Constants over the pH Range of 2.5–7.5. Biophysical Journal, 2012, 103, 303-312.	0.5	138
4	Structural and mechanistic insights into mechanoactivation of focal adhesion kinase. Proceedings of the United States of America, 2019, 116, 6766-6774.	7.1	90
5	CONAN: A Tool to Decode Dynamical Information from Molecular Interaction Maps. Biophysical Journal, 2018, 114, 1267-1273.	0.5	82
6	A proline switch explains kinetic heterogeneity in a coupled folding and binding reaction. Nature Communications, 2018, 9, 3332.	12.8	81
7	Kirkwood–Buff Approach Rescues Overcollapse of a Disordered Protein in Canonical Protein Force Fields. Journal of Physical Chemistry B, 2015, 119, 7975-7984.	2.6	70
8	Combined Experimental and Computational Approaches Reveal Distinct pH Dependence of Pectin Methylesterase Inhibitors. Plant Physiology, 2017, 173, 1075-1093.	4.8	48
9	Origin of Orthogonality of Strainâ€Promoted Click Reactions. Chemistry - A European Journal, 2015, 21, 12431-12435.	3.3	44
10	Two Differential Binding Mechanisms of FG-Nucleoporins and Nuclear Transport Receptors. Cell Reports, 2018, 22, 3660-3671.	6.4	41
11	Release of linker histone from the nucleosome driven by polyelectrolyte competition with a disordered protein. Nature Chemistry, 2022, 14, 224-231.	13.6	37
12	A fast recoiling silk-like elastomer facilitates nanosecond nematocyst discharge. BMC Biology, 2015, 13, 3.	3.8	34
13	Structure and Properties of a Non-processive, Salt-requiring, and Acidophilic Pectin Methylesterase from Aspergillus niger Provide Insights into the Key Determinants of Processivity Control. Journal of Biological Chemistry, 2016, 291, 1289-1306.	3.4	33
14	Substrate Dynamics in Enzyme Action: Rotations of Monosaccharide Subunits in the Binding Groove are Essential for Pectin Methylesterase Processivity. Biophysical Journal, 2013, 104, 1731-1739.	0.5	27
15	Probing the Paradigm of Promiscuity for Nâ€Heterocyclic Carbene Complexes and their Protein Adduct Formation. Angewandte Chemie - International Edition, 2021, 60, 19928-19932.	13.8	24
16	Sampling Long- versus Short-Range Interactions Defines the Ability of Force Fields To Reproduce the Dynamics of Intrinsically Disordered Proteins. Journal of Chemical Theory and Computation, 2017, 13, 3964-3974.	5.3	22
17	Processive Pectin Methylesterases: The Role of Electrostatic Potential, Breathing Motions and Bond Cleavage in the Rectification of Brownian Motions. PLoS ONE, 2014, 9, e87581.	2.5	21
18	Structural and dynamical characterization of the pH-dependence of the pectin methylesterase–pectin methylesterase inhibitor complex. Journal of Biological Chemistry, 2017, 292, 21538-21547.	3.4	19

DAVIDE MERCADANTE

#	Article	IF	CITATIONS
19	Minicollagen cysteine-rich domains encode distinct modes of polymerization to form stable nematocyst capsules. Scientific Reports, 2016, 6, 25709.	3.3	18
20	New insights into the specificity and processivity of two novel pectinases from Verticillium dahliae. International Journal of Biological Macromolecules, 2021, 176, 165-176.	7.5	15
21	α-Synuclein plasma membrane localization correlates with cellular phosphatidylinositol polyphosphate levels. ELife, 2021, 10, .	6.0	14
22	Molecular Dynamics Simulations Illuminate the Role of Counterion Condensation in the Electrophoretic Transport of Homogalacturonans. Biomacromolecules, 2017, 18, 505-516.	5.4	13
23	The Cell Wall Arabinose-Deficient <i>Arabidopsis thaliana</i> Mutant <i>murus5</i> Encodes a Defective Allele of <i>REVERSIBLY GLYCOSYLATED POLYPEPTIDE2</i> Plant Physiology, 2016, 171, 1905-1920.	4.8	5
24	Mechanical force can enhance c-Src kinase activity by impairing autoinhibition. Biophysical Journal, 2022, 121, 684-691.	0.5	5
25	On the electrophoretic mobilities of partiallyÂcharged oligosaccharides as a function of charge patterning and degree of polymerization. Electrophoresis, 2018, 39, 1497-1503.	2.4	2
26	Probing the Paradigm of Promiscuity for Nâ€Heterocyclic Carbene Complexes and their Protein Adduct Formation. Angewandte Chemie, 2021, 133, 20081-20085.	2.0	1
27	Rescuing the Over-Collapse of Intrinsically Disordered Proteins using a Force Field Derived by a New Paradigm. Biophysical Journal, 2016, 110, 556a.	0.5	0
28	Advancements in the Understanding of Pectin Methylesterase Enzymes and Their Inhibitors for Use in Food Science Applications. , 2019, , 202-208.		0
29	Intrinsically Disordered Proteins: Polymers Without Structure but With Great Potential for Applications in Food Science. , 2019, , 134-140.		0