
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8577251/publications.pdf Version: 2024-02-01



<u>7μονομινι Ιιλ</u>

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | <i>Bacteria</i> rather than <i>Archaea</i> dominate microbial ammonia oxidation in an agricultural soil. Environmental Microbiology, 2009, 11, 1658-1671.                                                    | 3.8  | 813       |
| 2  | Autotrophic growth of nitrifying community in an agricultural soil. ISME Journal, 2011, 5, 1226-1236.                                                                                                        | 9.8  | 366       |
| 3  | Change in deep soil microbial communities due to long-term fertilization. Soil Biology and Biochemistry, 2014, 75, 264-272.                                                                                  | 8.8  | 232       |
| 4  | Ecology of viruses in soils: Past, present and future perspectives. Soil Science and Plant Nutrition, 2008, 54, 1-32.                                                                                        | 1.9  | 209       |
| 5  | Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils.<br>Nature Communications, 2016, 7, 11728.                                                                       | 12.8 | 209       |
| 6  | Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. ISME Journal, 2015, 9, 1062-1075.                                                                | 9.8  | 185       |
| 7  | pH regulates key players of nitrification in paddy soils. Soil Biology and Biochemistry, 2015, 81, 9-16.                                                                                                     | 8.8  | 164       |
| 8  | Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea. ISME<br>Journal, 2012, 6, 1978-1984.                                                                           | 9.8  | 140       |
| 9  | Biodegradation of the veterinary antibiotics enrofloxacin and ceftiofur and associated microbial community dynamics. Science of the Total Environment, 2017, 581-582, 359-368.                               | 8.0  | 130       |
| 10 | Longâ€Term Field Fertilization Significantly Alters Community Structure of Ammoniaâ€Oxidizing Bacteria<br>rather than Archaea in a Paddy Soil. Soil Science Society of America Journal, 2011, 75, 1431-1439. | 2.2  | 121       |
| 11 | Interactions between Thaumarchaea, <i>Nitrospira</i> and methanotrophs modulate autotrophic nitrification in volcanic grassland soil. ISME Journal, 2014, 8, 2397-2410.                                      | 9.8  | 121       |
| 12 | Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-13C-acetate probing coupled with pyrosequencing. ISME Journal, 2015, 9, 721-734.                     | 9.8  | 118       |
| 13 | Urease geneâ€containing <i><scp>A</scp>rchaea</i> dominate autotrophic ammonia oxidation in two<br>acid soils. Environmental Microbiology, 2013, 15, 1795-1809.                                              | 3.8  | 117       |
| 14 | Comammox Nitrospira clade B contributes to nitrification in soil. Soil Biology and Biochemistry, 2019, 135, 392-395.                                                                                         | 8.8  | 116       |
| 15 | Effects of 44 years of chronic nitrogen fertilization on the soil nitrifying community of permanent grassland. Soil Biology and Biochemistry, 2015, 91, 76-83.                                               | 8.8  | 98        |
| 16 | Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes:<br>Methanotrophy as a Model System. Frontiers in Microbiology, 2016, 7, 1285.                                        | 3.5  | 95        |
| 17 | Soil microbial community structure and diversity are largely influenced by soil pH and nutrient quality in 78-year-old tree plantations. Biogeosciences, 2017, 14, 2101-2111.                                | 3.3  | 94        |
| 18 | Relation between methanogenic archaea and methane production potential in selected natural wetland ecosystems across China. Biogeosciences, 2011, 8, 329-338.                                                | 3.3  | 82        |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Ecological restoration alters microbial communities in mine tailings profiles. Scientific Reports, 2016, 6, 25193.                                                                                              | 3.3 | 75        |
| 20 | Autotrophic Growth of Bacterial and Archaeal Ammonia Oxidizers in Freshwater Sediment<br>Microcosms Incubated at Different Temperatures. Applied and Environmental Microbiology, 2013, 79,<br>3076-3084.        | 3.1 | 73        |
| 21 | High pH-enhanced soil nitrification was associated with ammonia-oxidizing bacteria rather than archaea in acidic soils. Applied Soil Ecology, 2015, 85, 21-29.                                                  | 4.3 | 71        |
| 22 | Biodegradation of oxytetracycline and enrofloxacin by autochthonous microbial communities from estuarine sediments. Science of the Total Environment, 2019, 648, 962-972.                                       | 8.0 | 65        |
| 23 | Effect of rice plants on CH4 production, transport, oxidation and emission in rice paddy soil. Plant and Soil, 2001, 230, 211-221.                                                                              | 3.7 | 64        |
| 24 | Phylogenetically distinct methanotrophs modulate methane oxidation in rice paddies across Taiwan.<br>Soil Biology and Biochemistry, 2018, 124, 59-69.                                                           | 8.8 | 63        |
| 25 | Composition and activity of rhizosphere microbial communities associated with healthy and diseased greenhouse tomatoes. Plant and Soil, 2014, 380, 337-347.                                                     | 3.7 | 62        |
| 26 | Inhibition of methane oxidation by nitrogenous fertilizers in a paddy soil. Frontiers in Microbiology, 2012, 3, 246.                                                                                            | 3.5 | 59        |
| 27 | Response of phyllosphere bacterial communities to elevated CO2 during rice growing season. Applied Microbiology and Biotechnology, 2014, 98, 9459-9471.                                                         | 3.6 | 59        |
| 28 | Expansion of <i>Thaumarchaeota</i> habitat range is correlated with horizontal transfer of ATPase operons. ISME Journal, 2019, 13, 3067-3079.                                                                   | 9.8 | 59        |
| 29 | Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant and Soil, 2015, 392, 27-44.                                                | 3.7 | 58        |
| 30 | Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness. Biology and Fertility of Soils, 2015, 51, 935-946.                                                    | 4.3 | 58        |
| 31 | Effect of benzoic acid on soil microbial communities associated with soilborne peanut diseases.<br>Applied Soil Ecology, 2017, 110, 34-42.                                                                      | 4.3 | 58        |
| 32 | Multiple long-term observations reveal a strategy for soil pH-dependent fertilization and fungal communities in support of agricultural production. Agriculture, Ecosystems and Environment, 2020, 293, 106837. | 5.3 | 57        |
| 33 | Archaea and bacteria respectively dominate nitrification in lightly and heavily grazed soil in a grassland system. Biology and Fertility of Soils, 2018, 54, 41-54.                                             | 4.3 | 52        |
| 34 | Active Ammonia Oxidizers in an Acidic Soil Are Phylogenetically Closely Related to Neutrophilic<br>Archaeon. Applied and Environmental Microbiology, 2014, 80, 1684-1691.                                       | 3.1 | 49        |
| 35 | Simazine application inhibits nitrification and changes the ammonia-oxidizing bacterial communities in a fertilized agricultural soil. FEMS Microbiology Ecology, 2011, 78, 511-519.                            | 2.7 | 48        |
| 36 | Contrasting effects of inorganic and organic fertilisation regimes on shifts in Fe redox bacterial communities in red soils. Soil Biology and Biochemistry, 2018, 117, 56-67.                                   | 8.8 | 48        |

| #  | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Molecular characterization of T4-type bacteriophages in a rice field. Environmental Microbiology, 2007, 9, 1091-1096.                                                                                                                                                            | 3.8 | 45        |
| 38 | Identification of microbial strategies for labile substrate utilization at phylogenetic classification using a microcosm approach. Soil Biology and Biochemistry, 2021, 153, 107970.                                                                                             | 8.8 | 45        |
| 39 | Methyl-β-cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and associated microbial activity in contaminated soil. Journal of Environmental Sciences, 2012, 24, 926-933.                                                                                  | 6.1 | 44        |
| 40 | Bacterial communities predominant in the degradation of 13C4-4,5,9,10-pyrene during composting.<br>Bioresource Technology, 2013, 143, 608-614.                                                                                                                                   | 9.6 | 44        |
| 41 | Remediation of polycyclic aromatic hydrocarbon and metal-contaminated soil by successive<br>methyl-β-cyclodextrin-enhanced soil washing–microbial augmentation: a laboratory evaluation.<br>Environmental Science and Pollution Research, 2013, 20, 976-986.                     | 5.3 | 41        |
| 42 | The impact of dissolved organic carbon on the spatial variability of methanogenic archaea<br>communities in natural wetland ecosystems across China. Applied Microbiology and Biotechnology,<br>2012, 96, 253-263.                                                               | 3.6 | 40        |
| 43 | Response of soil microbes to a reduction in phosphorus fertilizer in rice-wheat rotation paddy soils with varying soil P levels. Soil and Tillage Research, 2018, 181, 127-135.                                                                                                  | 5.6 | 37        |
| 44 | Molecular analyses reveal stability of bacterial communities in bulk soil of a Japanese paddy field:<br>Estimation by denaturing gradient gel electrophoresis of 16S rRNA genes amplified from DNA<br>accompanied with RNA. Soil Science and Plant Nutrition, 2007, 53, 448-458. | 1.9 | 36        |
| 45 | Active Autotrophic Ammonia-Oxidizing Bacteria in Biofilm Enrichments from Simulated Creek<br>Ecosystems at Two Ammonium Concentrations Respond to Temperature Manipulation. Applied and<br>Environmental Microbiology, 2011, 77, 7329-7338.                                      | 3.1 | 36        |
| 46 | Nitrification activity and putative ammonia-oxidizing archaea in acidic red soils. Journal of Soils and Sediments, 2012, 12, 420-428.                                                                                                                                            | 3.0 | 36        |
| 47 | Phylogenetically Distinct Phylotypes Modulate Nitrification in a Paddy Soil. Applied and Environmental Microbiology, 2015, 81, 3218-3227.                                                                                                                                        | 3.1 | 36        |
| 48 | Effect of salt stress on aerobic methane oxidation and associated methanotrophs; a microcosm study of a natural community from a non-saline environment. Soil Biology and Biochemistry, 2018, 125, 210-214.                                                                      | 8.8 | 36        |
| 49 | Effect of rice cultivar on CH4production potential of rice soil and CH4emission in a pot experiment.<br>Soil Science and Plant Nutrition, 2006, 52, 341-348.                                                                                                                     | 1.9 | 35        |
| 50 | Identification of the autotrophic denitrifying community in nitrate removal reactors by DNA-stable isotope probing. Bioresource Technology, 2017, 229, 134-142.                                                                                                                  | 9.6 | 35        |
| 51 | Neutrophilic bacteria are responsible for autotrophic ammonia oxidation in an acidic forest soil. Soil<br>Biology and Biochemistry, 2018, 119, 83-89.                                                                                                                            | 8.8 | 34        |
| 52 | Soil Organic Carbon in a Changing World. Pedosphere, 2017, 27, 789-791.                                                                                                                                                                                                          | 4.0 | 33        |
| 53 | Longâ€ŧerm field fertilization affects soil nitrogen transformations in a riceâ€wheatâ€rotation cropping<br>system. Journal of Plant Nutrition and Soil Science, 2012, 175, 939-946.                                                                                             | 1.9 | 30        |
| 54 | Community Structure of Active Aerobic Methanotrophs in Red Mangrove (Kandelia obovata) Soils<br>Under Different Frequency of Tides. Microbial Ecology, 2018, 75, 761-770.                                                                                                        | 2.8 | 30        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The Resilience of Microbial Community under Drying and Rewetting Cycles of Three Forest Soils.<br>Frontiers in Microbiology, 2016, 7, 1101.                                                                                          | 3.5 | 29        |
| 56 | Canonical ammonia oxidizers, rather than comammox Nitrospira, dominated autotrophic nitrification<br>during the mineralization of organic substances in two paddy soils. Soil Biology and Biochemistry,<br>2021, 156, 108192.        | 8.8 | 28        |
| 57 | Response of leaf endophytic bacterial community to elevated CO2 at different growth stages of rice plant. Frontiers in Microbiology, 2015, 6, 855.                                                                                   | 3.5 | 26        |
| 58 | Variance in bacterial communities, potential bacterial carbon sequestration and nitrogen fixation<br>between light and dark conditions under elevated CO2 in mine tailings. Science of the Total<br>Environment, 2019, 652, 234-242. | 8.0 | 26        |
| 59 | Bacterial community composition and assembly along a natural sodicity/salinity gradient in surface and subsurface soils. Applied Soil Ecology, 2021, 157, 103731.                                                                    | 4.3 | 26        |
| 60 | The long-term effects of using nitrite and urea on the enrichment of comammox bacteria. Science of the Total Environment, 2021, 755, 142580.                                                                                         | 8.0 | 25        |
| 61 | Metabolic flexibility of aerobic methanotrophs under anoxic conditions in Arctic lake sediments. ISME<br>Journal, 2022, 16, 78-90.                                                                                                   | 9.8 | 25        |
| 62 | Soil warming and fertilization altered rates of nitrogen transformation processes and selected for<br>adapted ammonia-oxidizing archaea in sub-arctic grassland soil. Soil Biology and Biochemistry, 2017,<br>107, 114-124.          | 8.8 | 24        |
| 63 | Atmospheric Methane Oxidizers Are Dominated by Upland Soil Cluster Alpha in 20 Forest Soils of<br>China. Microbial Ecology, 2020, 80, 859-871.                                                                                       | 2.8 | 24        |
| 64 | Title is missing!. Nutrient Cycling in Agroecosystems, 2002, 64, 101-110.                                                                                                                                                            | 2.2 | 23        |
| 65 | Effects of temperature on the composition and diversity of bacterial communities in bamboo soils at different elevations. Biogeosciences, 2017, 14, 4879-4889.                                                                       | 3.3 | 23        |
| 66 | Contributions of residue-C and -N to plant growth and soil organic matter pools under planted and unplanted conditions. Soil Biology and Biochemistry, 2018, 120, 91-104.                                                            | 8.8 | 23        |
| 67 | High contribution of ammonia-oxidizing archaea (AOA) to ammonia oxidation related to a potential active AOA species in various arable land soils. Journal of Soils and Sediments, 2019, 19, 1077-1087.                               | 3.0 | 23        |
| 68 | The pH-based ecological coherence of active canonical methanotrophs in paddy soils. Biogeosciences, 2020, 17, 1451-1462.                                                                                                             | 3.3 | 22        |
| 69 | Molecular analysis of the ammonia oxidizing bacterial community in the surface soil layer of a<br>Japanese paddy field. Soil Science and Plant Nutrition, 2006, 52, 427-431.                                                         | 1.9 | 21        |
| 70 | One-Cell Metabolic Phenotyping and Sequencing of Soil Microbiome by Raman-Activated Gravity-Driven Encapsulation (RAGE). MSystems, 2021, 6, e0018121.                                                                                | 3.8 | 21        |
| 71 | Contrasting microbial community responses to salinization and straw amendment in a semiarid bare soil and its wheat rhizosphere. Scientific Reports, 2019, 9, 9795.                                                                  | 3.3 | 20        |
| 72 | When the going gets tough: Emergence of a complex methane-driven interaction network during recovery from desiccation-rewetting. Soil Biology and Biochemistry, 2021, 153, 108109.                                                   | 8.8 | 20        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Salt tolerance-based niche differentiation of soil ammonia oxidizers. ISME Journal, 2022, 16, 412-422.                                                                                                  | 9.8 | 20        |
| 74 | Nitrogen input promotes denitrifying methanotrophs' abundance and contribution to methane<br>emission reduction in coastal wetland and paddy soil. Environmental Pollution, 2022, 302, 119090.          | 7.5 | 20        |
| 75 | Tenax TA extraction to understand the rate-limiting factors in methyl-Î2-cyclodextrin-enhanced bioremediation of PAH-contaminated soil. Biodegradation, 2013, 24, 365-375.                              | 3.0 | 19        |
| 76 | Geographical Distribution of Methanogenic Archaea in Nine Representative Paddy Soils in China.<br>Frontiers in Microbiology, 2016, 7, 1447.                                                             | 3.5 | 19        |
| 77 | Autotrophic archaeal nitrification is preferentially stimulated by rice callus mineralization in a paddy soil. Plant and Soil, 2019, 445, 55-69.                                                        | 3.7 | 19        |
| 78 | Response of a methane-driven interaction network to stressor intensification. FEMS Microbiology<br>Ecology, 2020, 96, .                                                                                 | 2.7 | 19        |
| 79 | Inhibition of Bacterial Ammonia Oxidation by Organohydrazines in Soil Microcosms. Frontiers in Microbiology, 2012, 3, 10.                                                                               | 3.5 | 17        |
| 80 | Soil N mineralization, nitrification and dynamic changes in abundance of ammonia-oxidizing bacteria and archaea along a 2000Âyear chronosequence of rice cultivation. Plant and Soil, 2013, 365, 59-68. | 3.7 | 17        |
| 81 | Long-term effects of grazing, liming and nutrient fertilization on the nitrifying community of grassland soils. Soil Biology and Biochemistry, 2018, 118, 97-102.                                       | 8.8 | 17        |
| 82 | Stable isotope probing of active methane oxidizers in rice field soils from cold regions. Biology and Fertility of Soils, 2019, 55, 243-250.                                                            | 4.3 | 17        |
| 83 | Crop rotation suppresses soil-borne Fusarium wilt of banana and alters microbial communities.<br>Archives of Agronomy and Soil Science, 2022, 68, 447-459.                                              | 2.6 | 17        |
| 84 | Multifunctional Periphytic Biofilms: Polyethylene Degradation and Cd2+ and Pb2+ Bioremediation under High Methane Scenario. International Journal of Molecular Sciences, 2020, 21, 5331.                | 4.1 | 17        |
| 85 | Community shift of microbial ammonia oxidizers in air-dried rice soils after 22Âyears of nitrogen<br>fertilization. Biology and Fertility of Soils, 2019, 55, 419-424.                                  | 4.3 | 16        |
| 86 | A phototrophy-driven microbial food web in a rice soil. Journal of Soils and Sediments, 2011, 11, 301-311.                                                                                              | 3.0 | 15        |
| 87 | Evidence for niche differentiation of nitrifying communities in grassland soils after 44 years of different field fertilization scenarios. Pedosphere, 2020, 30, 87-97.                                 | 4.0 | 15        |
| 88 | Disentangling abiotic and biotic controls of aerobic methane oxidation during re-colonization. Soil<br>Biology and Biochemistry, 2020, 142, 107729.                                                     | 8.8 | 15        |
| 89 | Impact of elevated atmospheric CO 2 on soil bacteria community in a grazed pasture after 12-year enrichment. Geoderma, 2017, 285, 19-26.                                                                | 5.1 | 13        |
| 90 | Long-term effects of grassland management on soil microbial abundance: implications for soil carbon and nitrogen storage. Biogeochemistry, 2018, 141, 213-228.                                          | 3.5 | 13        |

| #   | Article                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Succession of bacterial community and methanotrophy during lake shrinkage. Journal of Soils and Sediments, 2020, 20, 1545-1557.                                                                   | 3.0 | 12        |
| 92  | Prokaryotic community assembly after 40 years of soda solonetz restoration by natural grassland and reclaimed farmland. European Journal of Soil Biology, 2020, 100, 103213.                      | 3.2 | 12        |
| 93  | Niche Differentiation of Active Methane-Oxidizing Bacteria in Estuarine Mangrove Forest Soils in<br>Taiwan. Microorganisms, 2020, 8, 1248.                                                        | 3.6 | 12        |
| 94  | Electron shuttles facilitate anaerobic methane oxidation coupled to nitrous oxide reduction in paddy soil. Soil Biology and Biochemistry, 2021, 153, 108091.                                      | 8.8 | 12        |
| 95  | Chronic Nitrogen Fertilization Modulates Competitive Interactions Among Microbial Ammonia<br>Oxidizers in a Loess Soil. Pedosphere, 2019, 29, 24-33.                                              | 4.0 | 11        |
| 96  | Enhanced Adsorptive Bioremediation of Heavy Metals (Cd2+, Cr6+, Pb2+) by Methane-Oxidizing Epipelon.<br>Microorganisms, 2020, 8, 505.                                                             | 3.6 | 10        |
| 97  | Molecular identification of methane oxidizing bacteria in a Japanese rice field soil. Biology and Fertility of Soils, 2007, 44, 121-130.                                                          | 4.3 | 9         |
| 98  | Soil microbial community assemblage and its seasonal variability in alpine treeline ecotone on the eastern Qinghai-Tibet Plateau. Soil Ecology Letters, 2019, 1, 33-41.                           | 4.5 | 9         |
| 99  | Exogenous nitrogen addition inhibits sulfate-mediated anaerobic oxidation of methane in estuarine coastal sediments. Ecological Engineering, 2020, 158, 106021.                                   | 3.6 | 9         |
| 100 | Co-occurrence patterns among prokaryotes across an age gradient in pit mud of Chinese<br>strong-flavor liquor. Canadian Journal of Microbiology, 2020, 66, 495-504.                               | 1.7 | 9         |
| 101 | Elevated Atmospheric CO2 and Nitrogen Fertilization Affect the Abundance and Community Structure of Rice Root-Associated Nitrogen-Fixing Bacteria. Frontiers in Microbiology, 2021, 12, 628108.   | 3.5 | 9         |
| 102 | Soil aeration rather than methanotrophic community drives methane uptake under drought in a subtropical forest. Science of the Total Environment, 2021, 792, 148292.                              | 8.0 | 9         |
| 103 | Biofilm: A strategy for the dominance of comammox Nitrospira. Journal of Cleaner Production, 2022, 363, 132361.                                                                                   | 9.3 | 9         |
| 104 | DNA-Based Stable Isotope Probing. Methods in Molecular Biology, 2019, 2046, 17-29.                                                                                                                | 0.9 | 8         |
| 105 | Active Soil Nitrifying Communities Revealed by <i>In Situ</i> Transcriptomics and Microcosm-Based<br>Stable-Isotope Probing. Applied and Environmental Microbiology, 2020, 86, .                  | 3.1 | 8         |
| 106 | Revealing the community and metabolic potential of active methanotrophs by targeted metagenomics<br>in the Zoige wetland of the Tibetan Plateau. Environmental Microbiology, 2021, 23, 6520-6535. | 3.8 | 8         |
| 107 | Bioleaching of Heavy Metals from Printed Circuit Boards with an Acidophilic Iron-Oxidizing Microbial<br>Consortium in Stirred Tank Reactors. Bioengineering, 2022, 9, 79.                         | 3.5 | 8         |
| 108 | Plant-Mediated Changes in Soil N-Cycling Genes during Revegetation of Copper Mine Tailings. Frontiers<br>in Environmental Science, 2017, 5, .                                                     | 3.3 | 7         |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Shifts in the community composition of methane-cycling microorganisms during lake shrinkage.<br>Geoderma, 2018, 311, 9-14.                                                                                | 5.1 | 7         |
| 110 | DNA stableâ€isotope probing reveals potential key players for microbial decomposition and degradation of diatomâ€derived marine particulate matter. MicrobiologyOpen, 2020, 9, e1013.                     | 3.0 | 7         |
| 111 | Offsetting N2O emissions through nitrifying CO2 fixation in grassland soil. Soil Biology and Biochemistry, 2022, 165, 108528.                                                                             | 8.8 | 7         |
| 112 | Methanotrophy-driven accumulation of organic carbon in four paddy soils of Bangladesh.<br>Pedosphere, 2022, 32, 348-358.                                                                                  | 4.0 | 7         |
| 113 | Identification of Formateâ€Metabolizing Bacteria in Paddy Soil by DNAâ€Based Stable Isotope Probing. Soil<br>Science Society of America Journal, 2012, 76, 121-129.                                       | 2.2 | 6         |
| 114 | Dependency of biological nitrogen fixation on organic carbon in acidic mine tailings under light and dark conditions. Applied Soil Ecology, 2019, 140, 18-25.                                             | 4.3 | 6         |
| 115 | Stable-isotope probing of bacterial community for dissolved inorganic carbon utilization in<br>Microcystis aeruginosa-dominated eutrophic water. Journal of Environmental Sciences, 2019, 79,<br>264-272. | 6.1 | 6         |
| 116 | Temperature-dependent changes in active nitrifying communities in response to field fertilization legacy. Biology and Fertility of Soils, 2021, 57, 1-14.                                                 | 4.3 | 6         |
| 117 | Sheep grazing impacts on soil methanotrophs and their activity in typical steppe in the Loess Plateau<br>China. Applied Soil Ecology, 2022, 175, 104440.                                                  | 4.3 | 6         |
| 118 | Methanotrophs Contribute to Nitrogen Fixation in Emergent Macrophytes. Frontiers in Microbiology, 2022, 13, 851424.                                                                                       | 3.5 | 6         |
| 119 | DNA-based stable isotope probing identifies formate-metabolizing methanogenic archaea in paddy soil.<br>Microbiological Research, 2017, 202, 36-42.                                                       | 5.3 | 5         |
| 120 | Grazing weakens competitive interactions between active methanotrophs and nitrifiers modulating greenhouse-gas emissions in grassland soils. ISME Communications, 2021, 1, .                              | 4.2 | 5         |
| 121 | Active Methanotrophs in Suboxic Alpine Swamp Soils of the Qinghai–Tibetan Plateau. Frontiers in<br>Microbiology, 2020, 11, 580866.                                                                        | 3.5 | 4         |
| 122 | Rhizospheric Denitrification Potential and Related Microbial Characteristics Affected by Secondary Salinization in a Riparian Soil. Geomicrobiology Journal, 2015, 32, 624-634.                           | 2.0 | 3         |
| 123 | Pyrite oxidization accelerates bacterial carbon sequestration in copper mine tailings. Biogeosciences, 2019, 16, 573-583.                                                                                 | 3.3 | 3         |
| 124 | Sea animal activity controls CO2, CH4 and N2O emission hotspots on South Georgia, sub-Antarctica.<br>Soil Biology and Biochemistry, 2019, 132, 174-186.                                                   | 8.8 | 3         |
| 125 | Heterotrophy-coordinated diazotrophy is associated with significant changes of rare taxa in soil microbiome. Pedosphere, 2022, 32, 402-413.                                                               | 4.0 | 3         |
| 126 | Phylogeny and Metabolic Potential of the Methanotrophic Lineage MO3 in Beijerinckiaceae from the<br>Paddy Soil through Metagenome-Assembled Genome Reconstruction. Microorganisms, 2022, 10, 955.         | 3.6 | 3         |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Bacterial contribution to 17β-estradiol mineralization in lake sediment as revealed by 13C-DNA stable isotope probing. Environmental Pollution, 2021, 286, 117505.                                 | 7.5 | 2         |
| 128 | Effects of agricultural land use on the differentiation of nitrifier communities and functional patterns from natural terrestrial ecosystems. Science of the Total Environment, 2022, 835, 155568. | 8.0 | 2         |
| 129 | Methanotrophy Alleviates Nitrogen Constraint of Carbon Turnover by Rice Root-Associated<br>Microbiomes. Frontiers in Microbiology, 2022, 13, .                                                     | 3.5 | 2         |
| 130 | Glucose-induced changes in the bacterial communities of mine tailings at different acidification stages. Canadian Journal of Microbiology, 2019, 65, 201-213.                                      | 1.7 | 0         |