Abdul Muizz Pradipto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8577129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dzyaloshinskii–Moriya interaction in noncentrosymmetric superlattices. Npj Computational Materials, 2021, 7, .	3.5	17
2	Equilibrium Morphologies of Faceted GaN under the Metalorganic Vaporâ€Phase Epitaxy Condition: Wulff Construction Using Absolute Surface Energies. Physica Status Solidi (B): Basic Research, 2020, 257, 1900523.	0.7	8
3	Ab initio study for adsorption-desorption behavior on InAs wetting layer surface grown on GaAs(001) substrate. Journal of Crystal Growth, 2020, 532, 125369.	0.7	2
4	Roles of growth kinetics on GaN non-planar facets under metalorganic vapor phase epitaxy condition. Applied Physics Express, 2020, 13, 065505.	1.1	1
5	Ab initio calculations for the effect of wet oxidation condition on the reaction mechanism at 4H–SiC/SiO ₂ interface. Japanese Journal of Applied Physics, 2020, 59, SMMD01.	0.8	6
6	Effect of Step Edges on Adsorption Behavior for GaN(0001) Surfaces during Metalorganic Vapor Phase Epitaxy: An <i>Ab Initio</i> Study. Crystal Growth and Design, 2020, 20, 4358-4365.	1.4	8
7	Effect of Film Thickness on Structural Stability for BAIN and BGaN Alloys: Bondâ€Order Interatomic Potential Calculations. Physica Status Solidi (B): Basic Research, 2020, 257, 2000205.	0.7	1
8	Electron correlation effects and magneto-optical properties of yttrium iron garnet. AIP Advances, 2020, 10, .	0.6	6
9	Thermodynamic analysis for nonpolar III-nitride surfaces under metalorganic vapor-phase epitaxy conditions. Japanese Journal of Applied Physics, 2020, 59, 028003.	0.8	2
10	First Principles Calculation of Optical Properties of Transition Metals for Surface Plasmon Resonance Application. E-Journal of Surface Science and Nanotechnology, 2020, 18, 133-138.	0.1	2
11	Theoretical Investigations for Surface Reconstructions of Submonolayer InAs Grown on GaAs(001). Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800476.	0.8	0
12	Effect of surface reconstructions on misfit dislocation formation in InAs/GaAs(001). Japanese Journal of Applied Physics, 2019, 58, SIIB25.	0.8	0
13	Absolute surface energies of semipolar planes of AlN during metalorganic vapor phase epitaxy growth. Journal of Crystal Growth, 2019, 510, 7-12.	0.7	9
14	Theoretical investigations on the structural stability and miscibility in BAIN and BGaN alloys: bond-order interatomic potential calculations. Japanese Journal of Applied Physics, 2019, 58, SCCB21.	0.8	7
15	Enhanced perpendicular magnetocrystalline anisotropy energy in an artificial magnetic material with bulk spin-momentum coupling. Physical Review B, 2019, 99, .	1.1	16
16	Thermodynamic analysis of semipolar GaN and AlN under metalorganic vapor phase epitaxy growth conditions. Japanese Journal of Applied Physics, 2019, 58, SC1014.	0.8	7
17	Theoretical investigations on the growth mode of GaN thin films on an AlN(0001) substrate. Japanese Journal of Applied Physics, 2019, 58, SC1009.	0.8	2
18	Effect of 4d and 5d Transition-Metal Insertions to Spin-Dependent Transports in Fe/MgO Superlattices. Journal of Electronic Materials, 2019, 48, 1380-1385.	1.0	0

#	Article	IF	CITATIONS
19	Machine Learning Approach for Data Analysis of Magnetic Orbital Moments and Magnetocrystalline Anisotropy in Transition-Metal Thin Films on MgO(001). Journal of Electronic Materials, 2019, 48, 1319-1323.	1.0	4
20	Microscopic Investigation into the Electric Field Effect on Proximity-Induced Magnetism in Pt. Physical Review Letters, 2018, 120, 157203.	2.9	26
21	External electric field driven modification of the anomalous and spin Hall conductivities in Fe thin films on MgO(001). Physical Review B, 2018, 97, .	1.1	7
22	Symmetric and asymmetric exchange stiffnesses of transition-metal thin film interfaces in external electric field. Journal of Magnetism and Magnetic Materials, 2018, 457, 97-102.	1.0	4
23	An Interpretation for Defect-Induced Structural Transformation in SiC. ECS Transactions, 2018, 86, 427-432.	0.3	0
24	Empirical interatomic potential approach to the stability of graphitic structure in BAIN and BGaN alloys. Journal of Crystal Growth, 2018, 504, 13-16.	0.7	8
25	Effect of heavy-metal insertions at Fe/MgO interfaces on electric-field-induced modification of magnetocrystalline anisotropy. Journal of Magnetism and Magnetic Materials, 2017, 429, 214-220.	1.0	33
26	Interfacial Dzyaloshinskii-Moriya interaction and orbital magnetic moments of metallic multilayer films. AIP Advances, 2017, 7, .	0.6	15
27	Mechanism and electric field induced modification of magnetic exchange stiffness in transition metal thin films on MgO(001). Physical Review B, 2017, 96, .	1.1	9
28	Anisotropic interactions opposing magnetocrystalline anisotropy in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Sr</mml:mi><mml:m Physical Review B, 2016, 93, .</mml:m </mml:msub></mml:mrow></mml:math 	n> ı3ı k/mml	:m116>
29	An Organic Spin Valve Embedding a Selfâ€Assembled Monolayer of Organic Radicals. Advanced Materials Interfaces, 2016, 3, 1500855.	1.9	32
30	Ab initio modelling of magnetic anisotropy in Sr3NiPtO6. Physical Chemistry Chemical Physics, 2016, 18, 4078-4085.	1.3	8
31	Magnetic interactions in LiCu2O2: Single-chain versus double-chain models. Physical Review B, 2012, 86,	1.1	23
32	First-principles study of magnetic interactions in cupric oxide. Physical Review B, 2012, 85, .	1.1	26
33	Antisymmetric Magnetic Interactions in Oxo-Bridged Copper(II) Bimetallic Systems. Journal of Chemical Theory and Computation, 2010, 6, 3092-3101.	2.3	51
34	Benchmarking Full-Potential Linearized Augmented Plane Wave (FLAPW) Method for Determination of Muon Stopping Sites in LiF. Key Engineering Materials, 0, 855, 248-252.	0.4	1
35	Density Functional Theory Approach for Muon Sites Estimation in Mn ₃ Sn. Materials Science Forum, 0, 1028, 199-203.	0.3	0