
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8577069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	EcoToxXplorer: Leveraging Design Thinking to Develop a Standardized Webâ€Based Transcriptomics Analytics Platform for Diverse Users. Environmental Toxicology and Chemistry, 2022, 41, 21-29.	2.2	6
2	Characterizing toxicity pathways of fluoxetine to predict adverse outcomes in adult fathead minnows (Pimephales promelas). Science of the Total Environment, 2022, 817, 152747.	3.9	5
3	Comparative analysis of transcriptomic points-of-departure (tPODs) and apical responses in embryo-larval fathead minnows exposed to fluoxetine. Environmental Pollution, 2022, 295, 118667.	3.7	10
4	Developmental and Hepatic Gene Expression Changes in Chicken Embryos Exposed to <i>p</i> â€Tertâ€Butylphenyl Diphenyl Phosphate and Isopropylphenyl Phosphate via Egg Injection. Environmental Toxicology and Chemistry, 2022, 41, 739-747.	2.2	2
5	Toxicity screening of bisphenol A replacement compounds: cytotoxicity and mRNA expression in LMH 3D spheroids. Environmental Science and Pollution Research, 2022, , 1.	2.7	0
6	Effects of Avian Eggshell Oiling With Diluted Bitumen Show Sublethal Embryonic Polycyclic Aromatic Compound Exposure. Environmental Toxicology and Chemistry, 2022, 41, 159-174.	2.2	2
7	Occurrence, partitioning, and bioaccumulation of an emerging class of PBT substances (polychlorinated diphenyl sulfides) in Chaohu Lake, Southeast China. Water Research, 2022, 218, 118498.	5.3	7
8	Consideration of metabolomics and transcriptomics data in the context of using avian embryos for toxicity testing. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 258, 109370.	1.3	3
9	Effects on Apical Outcomes of Regulatory Relevance of Earlyâ€Life Stage Exposure of Doubleâ€Crested Cormorant Embryos to 4 Environmental Chemicals. Environmental Toxicology and Chemistry, 2021, 40, 390-401.	2.2	10
10	Development of a Comprehensive Toxicity Pathway Model for 17α-Ethinylestradiol in Early Life Stage Fathead Minnows (<i>Pimephales promelas</i>). Environmental Science & Technology, 2021, 55, 5024-5036.	4.6	13
11	Ultrafast functional profiling of RNA-seq data for nonmodel organisms. Genome Research, 2021, 31, 713-720.	2.4	15
12	Toxicity Screening of Bisphenol A Replacement Compounds: Cytotoxicity and mRNA Expression in Primary Hepatocytes of Chicken and Doubleâ€Crested Cormorant. Environmental Toxicology and Chemistry, 2021, 40, 1368-1378.	2.2	12
13	In Vitro Screening of 21 Bisphenol A Replacement Alternatives: Compared with Bisphenol A, the Majority of Alternatives Are More Cytotoxic and Dysregulate More Genes in Avian Hepatocytes. Environmental Toxicology and Chemistry, 2021, 40, 2024-2031.	2.2	4
14	Extracts from Dated Lake Sediment Cores in the Athabasca Oil Sands Region Alter Ethoxyresorufin―O â€deethylase Activity and Gene Expression in Avian Hepatocytes. Environmental Toxicology and Chemistry, 2021, 40, 1881-1891.	2.2	0
15	Cross-Model Comparison of Transcriptomic Dose–Response of Short-Chain Chlorinated Paraffins. Environmental Science & Technology, 2021, 55, 8149-8158.	4.6	15
16	ToxChip PCR Arrays for Two Arctic-Breeding Seabirds: Applications for Regional Environmental Assessments. Environmental Science & amp; Technology, 2021, 55, 7521-7530.	4.6	14
17	Polycyclic Aromatic Hydrocarbons Alter the Hepatic Expression of Genes Involved in Sanderling (<i>Calidris alba</i>) Preâ€migratory Fueling. Environmental Toxicology and Chemistry, 2021, 40, 1981-1989.	2.2	6
18	Concentration―and timeâ€dependent induction of Cyp1a and DNA damage response by benzo(a)pyrene in LMH threeâ€dimensional spheroids. Environmental and Molecular Mutagenesis, 2021, 62, 319-327.	0.9	2

#	Article	IF	CITATIONS
19	Effects of two Bisphenol A replacement compounds, 1,7-bis (4-hydroxyphenylthio)-3,5-dioxaheptane and Bisphenol AF, on development and mRNA expression in chicken embryos. Ecotoxicology and Environmental Safety, 2021, 215, 112140.	2.9	2
20	Assessing the Toxicity of 17α-Ethinylestradiol in Rainbow Trout Using a 4-Day Transcriptomics Benchmark Dose (BMD) Embryo Assay. Environmental Science & Technology, 2021, 55, 10608-10618.	4.6	14
21	Polychlorinated Diphenyl Sulfides: An Emerging Class of Persistent, Bioaccumulative, and Toxic Substances in the Environment. Environmental Toxicology and Chemistry, 2021, 40, 2657-2666.	2.2	6
22	Envisioning an international validation process for New Approach Methodologies in chemical hazard and risk assessment. Environmental Advances, 2021, 4, 100061.	2.2	10
23	Using Transcriptomics and Metabolomics to Understand Species Differences in Sensitivity to Chlorpyrifos in Japanese Quail and Doubleâ€Crested Cormorant Embryos. Environmental Toxicology and Chemistry, 2021, 40, 3019-3033.	2.2	11
24	Cytotoxic and Transcriptomic Effects in Avian Hepatocytes Exposed to a Complex Mixture from Air Samples, and Their Relation to the Organic Flame Retardant Signature. Toxics, 2021, 9, 324.	1.6	2
25	Targeted Metabolomics to Assess Exposure to Environmental Chemicals of Concern in Japanese Quail at Two Life Stages. Metabolites, 2021, 11, 850.	1.3	3
26	Chemical risk governance: Exploring stakeholder participation in Canada, the USA, and the EU. Ambio, 2021, , .	2.8	2
27	An Early–Life Stage Alternative Testing Strategy for Assessing the Impacts of Environmental Chemicals in Birds. Environmental Toxicology and Chemistry, 2020, 39, 141-154.	2.2	21
28	Computational evaluation of interactions between organophosphate esters and nuclear hormone receptors. Environmental Research, 2020, 182, 108982.	3.7	17
29	Polycyclic aromatic compounds (PACs) and trace elements in four marine bird species from northern Canada in a region of natural marine oil and gas seeps. Science of the Total Environment, 2020, 744, 140959.	3.9	16
30	Drivers of and Obstacles to the Adoption of Toxicogenomics for Chemical Risk Assessment: Insights from Social Science Perspectives. Environmental Health Perspectives, 2020, 128, 105002.	2.8	17
31	Toxicogenomic Assessment of Complex Chemical Signatures in Double-Crested Cormorant Embryos from Variably Contaminated Great Lakes Sites. Environmental Science & Technology, 2020, 54, 7504-7512.	4.6	9
32	Factors Affecting the Perception of New Approach Methodologies (NAMs) in the Ecotoxicology Community. Integrated Environmental Assessment and Management, 2020, 16, 269-281.	1.6	14
33	EcoToxModules: Custom Gene Sets to Organize and Analyze Toxicogenomics Data from Ecological Species. Environmental Science & Technology, 2020, 54, 4376-4387.	4.6	16
34	Evaluation of the Aryl Hydrocarbon Receptor Response in LMH 3D Spheroids. Environmental Toxicology and Chemistry, 2020, 39, 1693-1701.	2.2	3
35	A comparative study of 3 alternative avian toxicity testing methods: Effects on hepatic gene expression in the chicken embryo. Environmental Toxicology and Chemistry, 2019, 38, 2546-2555.	2.2	7
36	Extracts of Passive Samplers Deployed in Variably Contaminated Wetlands in the Athabasca Oil Sands Region Elicit Biochemical and Transcriptomic Effects in Avian Hepatocytes. Environmental Science & Technology, 2019, 53, 9192-9202.	4.6	21

#	Article	IF	CITATIONS
37	EcoToxChip: A nextâ€generation toxicogenomics tool for chemical prioritization and environmental management. Environmental Toxicology and Chemistry, 2019, 38, 279-288.	2.2	47
38	A rapid method of preparing complex organohalogen extracts from avian eggs: Applications to in vitro toxicogenomics screening. Environmental Toxicology and Chemistry, 2019, 38, 811-819.	2.2	10
39	Transcriptomic points-of-departure from short-term exposure studies are protective of chronic effects for fish exposed to estrogenic chemicals. Toxicology and Applied Pharmacology, 2019, 378, 114634.	1.3	36
40	Persistent, bioaccumulative, and toxic properties of liquid crystal monomers and their detection in indoor residential dust. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26450-26458.	3.3	76
41	Organophosphate Ester, 2-Ethylhexyl Diphenyl Phosphate (EHDPP), Elicits Cytotoxic and Transcriptomic Effects in Chicken Embryonic Hepatocytes and Its Biotransformation Profile Compared to Humans. Environmental Science & Technology, 2019, 53, 2151-2160.	4.6	57
42	T1000: a reduced gene set prioritized for toxicogenomic studies. PeerJ, 2019, 7, e7975.	0.9	15
43	Stage of development affects dry weight mercury concentrations in bird eggs: Laboratory evidence and adjustment method. Environmental Toxicology and Chemistry, 2018, 37, 1168-1174.	2.2	5
44	Bisâ€(3â€allylâ€4â€hydroxyphenyl) sulfone decreases embryonic viability and alters hepatic mRNA expression at two distinct developmental stages in chicken embryos exposed via egg injection. Environmental Toxicology and Chemistry, 2018, 37, 530-537.	2.2	14
45	Photolysis of highly brominated flame retardants leads to time-dependent dioxin-responsive mRNA expression in chicken embryonic hepatocytes. Chemosphere, 2018, 194, 352-359.	4.2	13
46	Down-Regulation of <i>hspb9</i> and <i>hspb11</i> Contributes to Wavy Notochord in Zebrafish Embryos Following Exposure to Polychlorinated Diphenylsulfides. Environmental Science & Technology, 2018, 52, 12829-12840.	4.6	7
47	Prioritization of 10 organic flame retardants using an avian hepatocyte toxicogenomic assay. Environmental Toxicology and Chemistry, 2018, 37, 3134-3144.	2.2	23
48	Athabasca Oil Sands Petcoke Extract Elicits Biochemical and Transcriptomic Effects in Avian Hepatocytes. Environmental Science & Technology, 2017, 51, 5783-5792.	4.6	18
49	Catbirds are the New Chickens: High Sensitivity to a Dioxin-like Compound in a Wildlife Species. Environmental Science & Technology, 2017, 51, 5252-5258.	4.6	6
50	Bisphenol S alters embryonic viability, development, gallbladder size, and messenger RNA expression in chicken embryos exposed via egg injection. Environmental Toxicology and Chemistry, 2016, 35, 1541-1549.	2.2	31
51	Time-dependent transcriptomic and biochemical responses of 6-formylindolo[3,2-b]carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are explained by AHR activation time. Biochemical Pharmacology, 2016, 115, 134-143.	2.0	31
52	Sunlight Irradiation of Highly Brominated Polyphenyl Ethers Generates Polybenzofuran Products That Alter Dioxin-responsive mRNA Expression in Chicken Hepatocytes. Environmental Science & Technology, 2016, 50, 2318-2327.	4.6	19
53	Use of a Novel Double-Crested Cormorant ToxChip PCR Array and the EROD Assay to Determine Effects of Environmental Contaminants in Primary Hepatocytes. Environmental Science & (amp; Technology, 2016, 50, 3265-3274.	4.6	29
54	<i>In Vitro</i> Metabolism of the Flame Retardant Triphenyl Phosphate in Chicken Embryonic Hepatocytes and the Importance of the Hydroxylation Pathway. Environmental Science and Technology Letters, 2015, 2, 100-104.	3.9	81

#	Article	IF	CITATIONS
55	Comparing the effects of tetrabromobisphenolâ€A, bisphenol A, and their potential replacement alternatives, TBBPAâ€bis(2,3â€dibromopropyl ether) and bisphenol S, on cell viability and messenger ribonucleic acid expression in chicken embryonic hepatocytes. Environmental Toxicology and Chemistry, 2015, 34, 391-401.	2.2	35
56	Biochemical and Transcriptomic Effects of Herring Gull Egg Extracts from Variably Contaminated Colonies of the Laurentian Great Lakes in Chicken Hepatocytes. Environmental Science & Technology, 2015, 49, 10190-10198.	4.6	21
57	Timeâ€dependent effects of the flame retardant tris(1,3â€dichloroâ€2â€propyl) phosphate (TDCPP) on mRNA expression, in vitro and in ovo, reveal optimal sampling times for rapidly metabolized compounds. Environmental Toxicology and Chemistry, 2014, 33, 2842-2849.	2.2	31
58	Adverse Outcome Pathway Development II: Best Practices. Toxicological Sciences, 2014, 142, 321-330.	1.4	207
59	Adverse Outcome Pathway (AOP) Development I: Strategies and Principles. Toxicological Sciences, 2014, 142, 312-320.	1.4	521
60	Rapid in Vitro Metabolism of the Flame Retardant Triphenyl Phosphate and Effects on Cytotoxicity and mRNA Expression in Chicken Embryonic Hepatocytes. Environmental Science & Technology, 2014, 48, 13511-13519.	4.6	180
61	Use of an avian hepatocyte assay and the avian toxchip polymerse chain reaction array for testing prioritization of 16 organic flame retardants. Environmental Toxicology and Chemistry, 2014, 33, 573-582.	2.2	87
62	Photolytic Degradation Products of Two Highly Brominated Flame Retardants Cause Cytotoxicity and mRNA Expression Alterations in Chicken Embryonic Hepatocytes. Environmental Science & Technology, 2014, 48, 12039-12046.	4.6	38
63	Tris(1,3-dichloro-2-propyl) phosphate perturbs the expression of genes involved in immune response and lipid and steroid metabolism in chicken embryos. Toxicology and Applied Pharmacology, 2014, 275, 104-112.	1.3	77
64	Sensitivity of avian species to the aryl hydrocarbon receptor ligand 6-formylindolo [3,2-b] carbazole (FICZ). Chemico-Biological Interactions, 2014, 221, 61-69.	1.7	20
65	Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos. Toxicology and Applied Pharmacology, 2014, 279, 303-310.	1.3	46
66	1,2-Dibromo-4-(1,2-dibromoethyl)-cyclohexane and tris(methylphenyl) phosphate cause significant effects on development, mRNA expression, and circulating bile acid concentrations in chicken embryos. Toxicology and Applied Pharmacology, 2014, 277, 279-287.	1.3	27
67	In Ovo Effects of Two Organophosphate Flame Retardants—TCPP and TDCPP—on Pipping Success, Development, mRNA Expression, and Thyroid Hormone Levels in Chicken Embryos. Toxicological Sciences, 2013, 134, 92-102.	1.4	169
68	In vitro microarray analysis identifies genes in acute-phase response pathways that are down-regulated in the liver of chicken embryos exposed in ovo to PFUdA. Toxicology in Vitro, 2013, 27, 1649-1658.	1.1	8
69	Cytochrome P4501A induction in avian hepatocyte cultures exposed to polychlorinated biphenyls: Comparisons with AHR1-mediated reporter gene activity and in ovo toxicity. Toxicology and Applied Pharmacology, 2013, 266, 38-47.	1.3	30
70	Cytochrome P4501A induction in primary cultures of embryonic European starling hepatocytes exposed to TCDD, PeCDF and TCDF. Ecotoxicology, 2013, 22, 731-739.	1.1	14
71	Amino Acid Sequence of the Ligand-Binding Domain of the Aryl Hydrocarbon Receptor 1 Predicts Sensitivity of Wild Birds to Effects of Dioxin-Like Compounds. Toxicological Sciences, 2013, 131, 139-152.	1.4	101
72	Effects of Tris(1,3-dichloro-2-propyl) phosphate and Tris(1-chloropropyl) phosphate on Cytotoxicity and mRNA Expression in Primary Cultures of Avian Hepatocytes and Neuronal Cells. Toxicological Sciences, 2012, 126, 140-148.	1.4	122

#	Article	IF	CITATIONS
73	Sequence and In Vitro Function of Chicken, Ring-Necked Pheasant, and Japanese Quail AHR1 Predict In Vivo Sensitivity to Dioxins. Environmental Science & Technology, 2012, 46, 2967-2975.	4.6	54
74	A luciferase reporter gene assay and aryl hydrocarbon receptor 1 genotype predict the LD50 of polychlorinated biphenyls in avian species. Toxicology and Applied Pharmacology, 2012, 263, 390-401.	1.3	32
75	In vitro and in ovo effects of four brominated flame retardants on toxicity and hepatic mRNA expression in chicken embryos. Toxicology Letters, 2011, 207, 25-33.	0.4	66
76	The effects of Dechlorane Plus on toxicity and mRNA expression in chicken embryos: A comparison of in vitro and in ovo approaches. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2011, 154, 129-134.	1.3	23
77	Highly purified hexachlorobenzene induces cytochrome P4501A in primary cultures of chicken embryo hepatocytes. Toxicology and Applied Pharmacology, 2010, 248, 185-193.	1.3	16
78	Pipping Success, Isomer-Specific Accumulation, and Hepatic mRNA Expression in Chicken Embryos Exposed to HBCD. Toxicological Sciences, 2010, 115, 492-500.	1.4	38
79	Cytochrome P4501A Induction by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin and Two Chlorinated Dibenzofurans in Primary Hepatocyte Cultures of Three Avian Species. Toxicological Sciences, 2010, 113, 380-391.	1.4	54
80	Ethoxyresorufin O-deethylase induction by TCDD, PeCDF and TCDF in ring-necked pheasant and Japanese quail hepatocytes: Time-dependent effects on concentration–response curves. Toxicology in Vitro, 2010, 24, 1301-1305.	1.1	12
81	Effects of 18 Perfluoroalkyl Compounds on mRNA Expression in Chicken Embryo Hepatocyte Cultures. Toxicological Sciences, 2009, 111, 311-320.	1.4	29
82	Detection of PBDE effects on mRNA expression in chicken (Gallus domesticus) neuronal cells using real-time RT-PCR and a new differential display method. Toxicology in Vitro, 2008, 22, 1337-1343.	1.1	25
83	Detection of Polybrominated Diphenyl Ethers in Herring Gull <i>(Larus argentatus</i>) brains: Effects on mRNA Expression in Cultured Neuronal Cells. Environmental Science & Technology, 2008, 42, 7715-7721.	4.6	24
84	Effects of Hexabromocyclododecane and Polybrominated Diphenyl Ethers on mRNA Expression in Chicken (Gallus domesticus) Hepatocytes. Toxicological Sciences, 2008, 106, 479-487.	1.4	46