Vasily A Popkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8576127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial membrane potential. Analytical Biochemistry, 2018, 552, 50-59.	1.1	1,161
2	Miro1 Enhances Mitochondria Transfer from Multipotent Mesenchymal Stem Cells (MMSC) to Neural Cells and Improves the Efficacy of Cell Recovery. Molecules, 2018, 23, 687.	1.7	130
3	Effect of MSCs and MSC-Derived Extracellular Vesicles on Human Blood Coagulation. Cells, 2019, 8, 258.	1.8	91
4	Lessons from the Discovery of Mitochondrial Fragmentation (Fission): A Review and Update. Cells, 2019, 8, 175.	1.8	65
5	The Mitochondrion as a Key Regulator of Ischaemic Tolerance and Injury. Heart Lung and Circulation, 2014, 23, 897-904.	0.2	40
6	Microbiota and mitobiota. Putting an equal sign between mitochondria and bacteria. Biochemistry (Moscow), 2014, 79, 1017-1031.	0.7	39
7	Mitochondria as a Source and a Target for Uremic Toxins. International Journal of Molecular Sciences, 2019, 20, 3094.	1.8	39
8	The age-associated loss of ischemic preconditioning in the kidney is accompanied by mitochondrial dysfunction, increased protein acetylation and decreased autophagy. Scientific Reports, 2017, 7, 44430.	1.6	35
9	Mechanisms of LPS-Induced Acute Kidney Injury in Neonatal and Adult Rats. Antioxidants, 2018, 7, 105.	2.2	35
10	Kidney Cells Regeneration: Dedifferentiation of Tubular Epithelium, Resident Stem Cells and Possible Niches for Renal Progenitors. International Journal of Molecular Sciences, 2019, 20, 6326.	1.8	33
11	Microbiome-Metabolome Signature of Acute Kidney Injury. Metabolites, 2020, 10, 142.	1.3	29
12	Functional Significance of the Mitochondrial Membrane Potential. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2018, 12, 20-26.	0.3	28
13	Intercellular Signalling Cross-Talk: To Kill, To Heal and To Rejuvenate. Heart Lung and Circulation, 2017, 26, 648-659.	0.2	24
14	Aged kidney: can we protect it? Autophagy, mitochondria and mechanisms of ischemic preconditioning. Cell Cycle, 2018, 17, 1291-1309.	1.3	21
15	Mechanisms of Age-Dependent Loss of Dietary Restriction Protective Effects in Acute Kidney Injury. Cells, 2018, 7, 178.	1.8	20
16	Age-Related Changes in Bone-Marrow Mesenchymal Stem Cells. Cells, 2021, 10, 1273.	1.8	19
17	Gut Microbiota as a Source of Uremic Toxins. International Journal of Molecular Sciences, 2022, 23, 483.	1.8	19
18	Do Extracellular Vesicles Derived from Mesenchymal Stem Cells Contain Functional Mitochondria?. International Journal of Molecular Sciences, 2022, 23, 7408.	1.8	19

VASILY A POPKOV

#	Article	IF	CITATIONS
19	Pregnancy protects the kidney from acute ischemic injury. Scientific Reports, 2018, 8, 14534.	1.6	17
20	Cysteine Cathepsins Inhibition Affects Their Expression and Human Renal Cancer Cell Phenotype. Cancers, 2020, 12, 1310.	1.7	17
21	Effects of Traumatic Brain Injury on the Gut Microbiota Composition and Serum Amino Acid Profile in Rats. Cells, 2022, 11, 1409.	1.8	17
22	Mitochondrial Aging: Is There a Mitochondrial Clock?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw184.	1.7	16
23	Neuroprotective Potential of Mild Uncoupling in Mitochondria. Pros and Cons. Brain Sciences, 2021, 11, 1050.	1.1	16
24	Is the Mitochondrial Membrane Potential (â^†Î ^{°.}) Correctly Assessed? Intracellular and Intramitochondrial Modifications of the â^†Î ^{°.} Probe, Rhodamine 123. International Journal of Molecular Sciences, 2022, 23, 482.	1.8	15
25	Mitodiversity. Biochemistry (Moscow), 2015, 80, 532-541.	0.7	14
26	Resemblance and differences in dietary restriction nephroprotective mechanisms in young and old rats. Aging, 2020, 12, 18693-18715.	1.4	12
27	Diseases and aging: Gender matters. Biochemistry (Moscow), 2015, 80, 1560-1570.	0.7	11
28	Molecular and cellular interactions between mother and fetus. Pregnancy as a rejuvenating factor. Biochemistry (Moscow), 2016, 81, 1480-1487.	0.7	9
29	Rapamycin Is Not Protective against Ischemic and Cisplatin-Induced Kidney Injury. Biochemistry (Moscow), 2019, 84, 1502-1512.	0.7	9
30	Mitochondria in the Nuclei of Rat Myocardial Cells. Cells, 2020, 9, 712.	1.8	8
31	Nonphosphorylating Oxidation in Mitochondria and Related Processes. Biochemistry (Moscow), 2020, 85, 1570-1577.	0.7	7
32	Bacterial therapy and mitochondrial therapy. Biochemistry (Moscow), 2017, 82, 1549-1556.	0.7	5
33	Do mitochondria have an immune system?. Biochemistry (Moscow), 2016, 81, 1229-1236.	0.7	4
34	Dietary restriction modulates mitochondrial DNA damage and oxylipin profile in aged rats. FEBS Journal, 2022, 289, 5697-5713.	2.2	4
35	Mechanisms of inflammatory injury of renal tubular cells in a cellular model of pyelonephritis. Biochemistry (Moscow), 2016, 81, 1240-1250.	0.7	3
36	Comparative Study of the Severity of Renal Damage in Newborn and Adult Rats under Conditions of Ischemia/Reperfusion and Endotoxin Administration. Bulletin of Experimental Biology and Medicine, 2018, 165, 189-194.	0.3	3

VASILY A ΡΟΡΚΟΥ

#	Article	IF	CITATIONS
37	Quantification of mitochondrial morphology in situ. Cell and Tissue Biology, 2017, 11, 51-58.	0.2	1
38	P1828A PANEL OF URINE BIOMARKERS FOR EARLY KIDNEY INJURY DETECTION IN NEWBORNS. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	1
39	FP184THE EFFECTS OF MITOCHONDRIA-TARGETED ANTIOXIDANT SKQR1 ON RENAL BLOOD FLOW DURING ISCHEMIA/REPERFUSION OF KIDNEY. Nephrology Dialysis Transplantation, 2015, 30, iii128-iii128.	0.4	0
40	Specific issues of mitochondrial fragmentation (Fission). Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2015, 9, 278-284.	0.3	0
41	SP164WHY DOES ISCHEMIC PRECONDITIONING NOT WORK IN AGED KIDNEY. Nephrology Dialysis Transplantation, 2017, 32, iii159-iii159.	0.4	0
42	FP237EFFECTS OF THE AGE ON ACUTE KIDNEY INJURY IN NEONATAL AND ADULT RATS. Nephrology Dialysis Transplantation, 2018, 33, i109-i109.	0.4	0
43	Molecular mechanisms of ischemic kidney injury and protection: the role of mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, e55-e56.	0.5	0
44	FP261DIETARY RESTRICTION AS A NEPHROPROTECTIVE APPROACH AGAINST ACUTE KIDNEY INJURY IN YOUNG AND OLD ORGANISMS. Nephrology Dialysis Transplantation, 2019, 34, .	0.4	0
45	FP833NOVEL BIOMARKERS OF KIDNEY INJURY IN NEWBORNS WITH SURGICAL PATHOLOGIES. Nephrology Dialysis Transplantation, 2019, 34, .	0.4	0
46	P0529THE DIFFERENCE IN DIETARY RESTRICTION-INDUCED NEPHROPROTECTIVE MECHANISMS IN YOUNG AND OLD ANIMALS. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	0
47	P0017ESTIMATION OF KIDNEY MITOCHONDRIA TOLERANCE VIA FLUORESCENCE MICROSCOPY. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	0