Simon H Pang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8575956/publications.pdf Version: 2024-02-01

SIMON H PANC

#	Article	IF	CITATIONS
1	Developing reactors for electrifying bio-methanation: a perspective from bio-electrochemistry. Sustainable Energy and Fuels, 2022, 6, 1249-1263.	2.5	3
2	Volatile Products of the Autoxidation of Poly(ethylenimine) in CO ₂ Sorbents. Journal of Physical Chemistry C, 2022, 126, 8807-8816.	1.5	9
3	Fluorescent Probe of Aminopolymer Mobility in Bulk and in Nanoconfined Direct Air CO ₂ Capture Supports. Journal of Physical Chemistry C, 2022, 126, 10419-10428.	1.5	5
4	Hydrogenolysis of N-Benzylcyclohexylamine: A Support Specific â€~Nano Effect'. Catalysis Letters, 2021, 151, 2972-2981.	1.4	0
5	Transport Cost for Carbon Removal Projects With Biomass and CO2 Storage. Frontiers in Energy Research, 2021, 9, .	1.2	9
6	Efficient Hydrogen Delivery for Microbial Electrosynthesis via 3D-Printed Cathodes. Frontiers in Microbiology, 2021, 12, 696473.	1.5	25
7	Effect of Extended Aging and Oxidation on Linear Poly(propylenimine)-Mesoporous Silica Composites for CO ₂ Capture from Simulated Air and Flue Gas Streams. ACS Applied Materials & Interfaces, 2020, 12, 38085-38097.	4.0	46
8	3D Printed Polymer Composites for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2019, 58, 22015-22020.	1.8	17
9	Aminopolymer-Impregnated Hierarchical Silica Structures: Unexpected Equivalent CO ₂ Uptake under Simulated Air Capture and Flue Gas Capture Conditions. Chemistry of Materials, 2019, 31, 5229-5237.	3.2	85
10	Direct CO ₂ Capture from Air using Poly(ethylenimine)-Loaded Polymer/Silica Fiber Sorbents. ACS Sustainable Chemistry and Engineering, 2019, 7, 5264-5273.	3.2	131
11	Temperature-Programmed Desorption for Isotope Separation in Nanoporous Materials. Journal of Physical Chemistry C, 2018, 122, 1995-2001.	1.5	19
12	Synergy between Ceria Oxygen Vacancies and Cu Nanoparticles Facilitates the Catalytic Conversion of CO ₂ to CO under Mild Conditions. ACS Catalysis, 2018, 8, 12056-12066.	5.5	137
13	Oxidatively‣table Linear Poly(propylenimine)â€Containing Adsorbents for CO ₂ Capture from Ultradilute Streams. ChemSusChem, 2018, 11, 2628-2637.	3.6	72
14	CATALYSIS BY MICROPOROUS METAL ORGANIC FRAMEWORKS. , 2018, , .		0
15	Design of Aminopolymer Structure to Enhance Performance and Stability of CO ₂ Sorbents: Poly(propylenimine) vs Poly(ethylenimine). Journal of the American Chemical Society, 2017, 139, 3627-3630.	6.6	115
16	Linking Silica Support Morphology to the Dynamics of Aminopolymers in Composites. Langmuir, 2017, 33, 5412-5422.	1.6	11
17	Adsorption Microcalorimetry of CO ₂ in Confined Aminopolymers. Langmuir, 2017, 33, 117-124.	1.6	29
18	Synergistic Effects of Water and SO ₂ on Degradation of MIL-125 in the Presence of Acid Gases. Journal of Physical Chemistry C, 2016, 120, 27230-27240.	1.5	79

Simon H Pang

#	Article	IF	CITATIONS
19	Facet-Specific Stability of ZIF-8 in the Presence of Acid Gases Dissolved in Aqueous Solutions. Chemistry of Materials, 2016, 28, 6960-6967.	3.2	127
20	Interactions of SO ₂ -Containing Acid Gases with ZIF-8: Structural Changes and Mechanistic Investigations. Journal of Physical Chemistry C, 2016, 120, 27221-27229.	1.5	115
21	Propane Dehydrogenation over Alumina-Supported Iron/Phosphorus Catalysts: Structural Evolution of Iron Species Leading to High Activity and Propylene Selectivity. ACS Catalysis, 2016, 6, 5673-5683.	5.5	96
22	Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides. Applied Catalysis A: General, 2016, 517, 187-195.	2.2	73
23	Control of surface alkyl catalysis with thiolate monolayers. Catalysis Science and Technology, 2016, 6, 2413-2418.	2.1	11
24	PIM-1 as a Solution-Processable "Molecular Basket―for CO ₂ Capture from Dilute Sources. ACS Macro Letters, 2015, 4, 1415-1419.	2.3	60
25	Controlling Catalytic Selectivity via Adsorbate Orientation on the Surface: From Furfural Deoxygenation to Reactions of Epoxides. Journal of Physical Chemistry Letters, 2015, 6, 1348-1356.	2.1	37
26	Ring-Opening and Oxidation Pathways of Furanic Oxygenates on Oxygen-Precovered Pd(111). Journal of Physical Chemistry C, 2014, 118, 27933-27943.	1.5	20
27	Hydrogen Exposure Effects on Pt/Al ₂ O ₃ Catalysts Coated with Thiolate Monolayers. Langmuir, 2014, 30, 14104-14110.	1.6	11
28	Synergistic Effects of Alloying and Thiolate Modification in Furfural Hydrogenation over Cu-Based Catalysts. Journal of Physical Chemistry Letters, 2014, 5, 4110-4114.	2.1	56
29	Effects of Thiol Modifiers on the Kinetics of Furfural Hydrogenation over Pd Catalysts. ACS Catalysis, 2014, 4, 3123-3131.	5.5	106
30	O H versus C H bond scission sequence in ethanol decomposition on Pd(111). Surface Science, 2014, 619, 114-118.	0.8	22
31	Directing reaction pathways by catalyst active-site selection using self-assembled monolayers. Nature Communications, 2013, 4, 2448.	5.8	180
32	Surface Chemistry of 2-lodoethanol on Pd(111): Orientation of Surface-Bound Alcohol Controls Selectivity. Journal of Physical Chemistry C, 2012, 116, 4201-4208.	1.5	13
33	Adsorption Orientation-Induced Selectivity Control of Reactions of Benzyl Alcohol on Pd(111). Journal of Physical Chemistry C, 2012, 116, 13654-13660.	1.5	54
34	Adsorption and Reaction of Furfural and Furfuryl Alcohol on Pd(111): Unique Reaction Pathways for Multifunctional Reagents. ACS Catalysis, 2011, 1, 1272-1283.	5.5	145