J Lynn Fink

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8575705/j-lynn-fink-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

63	10,649	34	67
papers	citations	h-index	g-index
67	13,976 ext. citations	16.3	7.12
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
63	Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer. <i>Gastroenterology</i> , 2021 , 160, 362-377.e13	13.3	32
62	Subtype-Specific Analyses Reveal Infiltrative Basal Cell Carcinomas Are Highly Interactive with their Environment. <i>Journal of Investigative Dermatology</i> , 2021 , 141, 2380-2390	4.3	5
61	HNF4A and GATA6 Loss Reveals Therapeutically Actionable Subtypes in Pancreatic Cancer. <i>Cell Reports</i> , 2020 , 31, 107625	10.6	34
60	Chromosome arm aneuploidies shape tumour evolution and drug response. <i>Nature Communications</i> , 2020 , 11, 449	17.4	30
59	Genomic footprints of activated telomere maintenance mechanisms in cancer. <i>Nature Communications</i> , 2020 , 11, 733	17.4	40
58	High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations. <i>Nature Communications</i> , 2020 , 11, 736	17.4	32
57	Combined burden and functional impact tests for cancer driver discovery using DriverPower. <i>Nature Communications</i> , 2020 , 11, 734	17.4	16
56	Integrative pathway enrichment analysis of multivariate omics data. <i>Nature Communications</i> , 2020 , 11, 735	17.4	53
55	Pathway and network analysis of more than 2500 whole cancer genomes. <i>Nature Communications</i> , 2020 , 11, 729	17.4	38
54	Patterns of somatic structural variation in human cancer genomes. <i>Nature</i> , 2020 , 578, 112-121	50.4	232
53	Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. <i>Nature</i> , 2020 , 578, 102-111	50.4	220
52	Pan-cancer analysis of whole genomes. <i>Nature</i> , 2020 , 578, 82-93	50.4	840
51	Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. <i>Nature Genetics</i> , 2020 , 52, 306-319	36.3	122
50	Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer. <i>Nature Genetics</i> , 2020 , 52, 294-305	36.3	81
49	Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. <i>Nature Genetics</i> , 2020 , 52, 331-341	36.3	168
48	Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. <i>Communications Biology</i> , 2020 , 3, 56	6.7	77
47	Marked mitochondrial genetic variation in individuals and populations of the carcinogenic liver fluke Clonorchis sinensis. <i>PLoS Neglected Tropical Diseases</i> , 2020 , 14, e0008480	4.8	4

(2013-2019)

46	Progression of Disease Within 24 Months in Follicular Lymphoma Is Associated With Reduced Intratumoral Immune Infiltration. <i>Journal of Clinical Oncology</i> , 2019 , 37, 3300-3309	2.2	43
45	Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity. <i>Nature Communications</i> , 2019 , 10, 470	17.4	84
44	Subclonal evolution in disease progression from MGUS/SMM to multiple myeloma is characterised by clonal stability. <i>Leukemia</i> , 2019 , 33, 457-468	10.7	51
43	deletion drives acute myeloid leukemia resistance to MEK inhibitors. <i>Oncotarget</i> , 2019 , 10, 5755-5767	3.3	5
42	Translocation Breakpoints Preferentially Occur in Euchromatin and Acrocentric Chromosomes. <i>Cancers</i> , 2018 , 10,	6.6	12
41	Targeted Next-Generation Sequencing for Detecting Gene Fusions in Leukemia. <i>Molecular Cancer Research</i> , 2018 , 16, 279-285	6.6	20
40	Single-cell RNA-seq reveals dynamic transcriptome profiling in human early neural differentiation. <i>GigaScience</i> , 2018 , 7,	7.6	11
39	Whole-genome landscape of pancreatic neuroendocrine tumours. <i>Nature</i> , 2017 , 543, 65-71	50.4	482
38	Cutting edge genomics reveal new insights into tumour development, disease progression and therapeutic impacts in multiple myeloma. <i>British Journal of Haematology</i> , 2017 , 178, 196-208	4.5	13
37	Hypermutation In Pancreatic Cancer. <i>Gastroenterology</i> , 2017 , 152, 68-74.e2	13.3	130
36	Genomic analyses identify molecular subtypes of pancreatic cancer. <i>Nature</i> , 2016 , 531, 47-52	50.4	1785
35	Whole genomes redefine the mutational landscape of pancreatic cancer. <i>Nature</i> , 2015 , 518, 495-501	50.4	1579
34	Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance. <i>Journal of Pathology</i> , 2015 , 237, 363-78	9.4	72
33	Whole-genome characterization of chemoresistant ovarian cancer. <i>Nature</i> , 2015 , 521, 489-94	50.4	890
32	Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. <i>Nature Communications</i> , 2014 , 5, 5224	17.4	176
31	A workflow to increase verification rate of chromosomal structural rearrangements using high-throughput next-generation sequencing. <i>BioTechniques</i> , 2014 , 57, 31-8	2.5	
30	Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling. <i>International Journal of Cancer</i> , 2014 , 135, 1110-8	7.5	149
29	Computational approaches to identify functional genetic variants in cancer genomes. <i>Nature Methods</i> , 2013 , 10, 723-9	21.6	129

28	Somatic point mutation calling in low cellularity tumors. <i>PLoS ONE</i> , 2013 , 8, e74380	3.7	49
27	RON is not a prognostic marker for resectable pancreatic cancer. <i>BMC Cancer</i> , 2012 , 12, 395	4.8	16
26	Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. <i>Nature</i> , 2012 , 491, 399-	-45054	1427
25	The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. <i>Nature</i> , 2012 , 486, 266-70	50.4	253
24	Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 5934-41	11.5	179
23	qpure: A tool to estimate tumor cellularity from genome-wide single-nucleotide polymorphism profiles. <i>PLoS ONE</i> , 2012 , 7, e45835	3.7	80
22	Word add-in for ontology recognition: semantic enrichment of scientific literature. <i>BMC Bioinformatics</i> , 2010 , 11, 103	3.6	10
21	Integration of open access literature into the RCSB Protein Data Bank using BioLit. <i>BMC Bioinformatics</i> , 2010 , 11, 220	3.6	7
20	The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. <i>Nature Genetics</i> , 2009 , 41, 553-62	36.3	356
19	Literature Databases 2009 , 331-345		
18	Towards defining the nuclear proteome. <i>Genome Biology</i> , 2008 , 9, R15	18.3	27
17	Computational biology resources lack persistence and usability. <i>PLoS Computational Biology</i> , 2008 , 4, e1000136	5	23
16	BioLit: integrating biological literature with databases. <i>Nucleic Acids Research</i> , 2008 , 36, W385-9	20.1	26
15	I am not a scientist, I am a number. <i>PLoS Computational Biology</i> , 2008 , 4, e1000247	5	8
14	LOCATE: a mammalian protein subcellular localization database. <i>Nucleic Acids Research</i> , 2008 , 36, D230-	-3 0.1	108
13	INTRINSIC EVALUATION OF TEXT MINING TOOLS MAY NOT PREDICT PERFORMANCE ON REALISTIC TASKS 2007 ,		4
13		2	12

LIST OF PUBLICATIONS

10	Evaluation and comparison of mammalian subcellular localization prediction methods. <i>BMC Bioinformatics</i> , 2006 , 7 Suppl 5, S3	3.6	46	
9	LOCATE: a mouse protein subcellular localization database. <i>Nucleic Acids Research</i> , 2006 , 34, D213-7	20.1	65	
8	Differential use of signal peptides and membrane domains is a common occurrence in the protein output of transcriptional units. <i>PLoS Genetics</i> , 2006 , 2, e46	6	25	
7	Subcellular localization of mammalian type II membrane proteins. <i>Traffic</i> , 2006 , 7, 613-25	5.7	17	
6	IL-2- and STAT5-regulated cytokine gene expression in cells expressing the Tax protein of HTLV-1. <i>Oncogene</i> , 2005 , 24, 4624-33	9.2	31	
5	2HAPI: a microarray data analysis system. <i>Bioinformatics</i> , 2003 , 19, 1443-5	7.2	7	
4	The PlantsP and PlantsT Functional Genomics Databases. <i>Nucleic Acids Research</i> , 2003 , 31, 342-4	20.1	49	
3	Rival penalized competitive learning (RPCL): a topology-determining algorithm for analyzing gene expression data. <i>Computational Biology and Chemistry</i> , 2003 , 27, 565-74	3.6	12	
2	Use of keyword hierarchies to interpret gene expression patterns. <i>Bioinformatics</i> , 2001 , 17, 319-26	7.2	101	
1	Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity		5	