Sven Enerbäck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8575393/publications.pdf

Version: 2024-02-01

57 papers

13,688 citations

87723 38 h-index 53 g-index

57 all docs 57 docs citations

57 times ranked 13366 citing authors

#	Article	IF	CITATIONS
1	ATGL activity regulates GLUT1-mediated glucose uptake and lactate production via TXNIP stability in adipocytes. Journal of Biological Chemistry, 2021, 296, 100332.	1.6	12
2	Lactate: the ugly duckling of energy metabolism. Nature Metabolism, 2020, 2, 566-571.	5.1	371
3	The generation of immuneâ€induced fever and emotional stressâ€induced hyperthermia in mice does not involve brown adipose tissue thermogenesis. FASEB Journal, 2020, 34, 5863-5876.	0.2	12
4	Human Bone Marrow Adipose Tissue is a Metabolically Active and Insulin-Sensitive Distinct Fat Depot. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 2300-2310.	1.8	28
5	FOXK1 and FOXK2 regulate aerobic glycolysis. Nature, 2019, 566, 279-283.	13.7	110
6	<i>Foxc2</i> is essential for podocyte function. Physiological Reports, 2019, 7, e14083.	0.7	10
7	FoxK1 and FoxK2 in insulin regulation of cellular and mitochondrial metabolism. Nature Communications, 2019, 10, 1582.	5.8	57
8	Elevated Glucose Levels Preserve Glucose Uptake, Hyaluronan Production, and Low Glutamate Release Following Interleukin-1Î ² Stimulation of Differentiated Chondrocytes. Cartilage, 2019, 10, 491-503.	1.4	15
9	Adipose Tissue Flexes Its Muscles. Cell Metabolism, 2018, 27, 712-713.	7.2	2
10	Peroxisome Proliferator Activated Receptor Gamma Controls Mature Brown Adipocyte Inducibility through Glycerol Kinase. Cell Reports, 2018, 22, 760-773.	2.9	86
11	Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nature Reviews Endocrinology, 2018, 14, 77-87.	4.3	238
12	Acidosis and Deafness in Patients with Recessive Mutations in FOXI1. Journal of the American Society of Nephrology: JASN, 2018, 29, 1041-1048.	3.0	84
13	BATLAS: Deconvoluting Brown Adipose Tissue. Cell Reports, 2018, 25, 784-797.e4.	2.9	89
14	<i>Foxc2</i> influences alveolar epithelial cell differentiation during lung development. Development Growth and Differentiation, 2017, 59, 501-514.	0.6	4
15	Metformin treatment significantly enhances intestinal glucose uptake in patients with type 2 diabetes: Results from a randomized clinical trial. Diabetes Research and Clinical Practice, 2017, 131, 208-216.	1.1	62
16	A randomized trial of cold-exposure on energy expenditure and supraclavicular brown adipose tissue volume in humans. Metabolism: Clinical and Experimental, 2016, 65, 926-934.	1.5	26
17	Brown Adipose Reporting Criteria in Imaging STudies (BARCIST 1.0): Recommendations for Standardized FDG-PET/CT Experiments in Humans. Cell Metabolism, 2016, 24, 210-222.	7.2	233
18	Beige Communication through Gap Junctions and Adaption by Autophagy. Cell Metabolism, 2016, 24, 370-371.	7.2	2

#	Article	IF	CITATIONS
19	The Gq signalling pathway inhibits brown and beige adipose tissue. Nature Communications, 2016, 7, 10895.	5.8	90
20	Characterization of brown adipose tissue by water–fat separated magnetic resonance imaging. Journal of Magnetic Resonance Imaging, 2015, 42, 1639-1645.	1.9	23
21	Casein Kinase 2—A Kinase that Inhibits Brown Fat Formation. Cell Metabolism, 2015, 22, 958-959.	7.2	2
22	Human Brown Adipose Tissue: What We Have Learned So Far. Diabetes, 2015, 64, 2352-2360.	0.3	171
23	Two types of brown adipose tissue in humans. Adipocyte, 2014, 3, 63-66.	1.3	51
24	Brown Adipose Tissue in Humans. Methods in Enzymology, 2014, 537, 141-159.	0.4	56
25	Brown adipose tissue and its therapeutic potential. Journal of Internal Medicine, 2014, 276, 364-377.	2.7	119
26	An Enzymatic Chromatin Switch that Directs Formation of Active Brown Fat. Cell Metabolism, 2014, 19, 3-4.	7.2	0
27	Hyperthyroidism Increases Brown Fat Metabolism in Humans. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E28-E35.	1.8	95
28	Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature, 2014, 516, 395-399.	13.7	316
29	Brown Adipose Tissue Improves Whole-Body Glucose Homeostasis and Insulin Sensitivity in Humans. Diabetes, 2014, 63, 4089-4099.	0.3	627
30	Blunted metabolic responses to cold and insulin stimulation in brown adipose tissue of obese humans. Obesity, 2013, 21, 2279-2287.	1.5	217
31	Adipose tissue plasticity and new therapeutic targets. Nature Reviews Endocrinology, 2013, 9, 69-70.	4.3	17
32	Evidence for two types of brown adipose tissue in humans. Nature Medicine, 2013, 19, 631-634.	15.2	563
33	Inducible Brown Adipose Tissue, or Beige Fat, Is Anabolic for the Skeleton. Endocrinology, 2013, 154, 2687-2701.	1.4	109
34	Presence of Brown Adipocytes in Retroperitoneal Fat From Patients With Benign Adrenal Tumors: Relationship With Outdoor Temperature. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 4097-4104.	1.8	41
35	Beige Adipocytes Are a Distinct Type of Thermogenic Fat Cell in Mouse and Human. Cell, 2012, 150, 366-376.	13.5	2,740
36	Different Metabolic Responses of Human Brown Adipose Tissue to Activation by Cold and Insulin. Cell Metabolism, 2011, 14, 272-279.	7.2	609

#	Article	lF	CITATIONS
37	The Adipocyte-Expressed Forkhead Transcription Factor Foxc2 Regulates Metabolism Through Altered Mitochondrial Function. Diabetes, 2011, 60, 427-435.	0.3	61
38	Human Brown Adipose Tissue. Cell Metabolism, 2010, 11, 248-252.	7.2	325
39	On the Role of FOX Transcription Factors in Adipocyte Differentiation and Insulin-stimulated Glucose Uptake. Journal of Biological Chemistry, 2009, 284, 10755-10763.	1.6	56
40	In vitro differentiated adipocytes from a Foxc2 reporter knock-in mouse as screening tool. Transgenic Research, 2009, 18, 889-897.	1.3	8
41	Functional Brown Adipose Tissue in Healthy Adults. New England Journal of Medicine, 2009, 360, 1518-1525.	13.9	2,683
42	The Forkhead Transcription Factor Foxil Is a Master Regulator of Vacuolar H+-ATPase Proton Pump Subunits in the Inner Ear, Kidney and Epididymis. PLoS ONE, 2009, 4, e4471.	1.1	116
43	Transcriptional Control of SLC26A4 Is Involved in Pendred Syndrome and Nonsyndromic Enlargement of Vestibular Aqueduct (DFNB4). American Journal of Human Genetics, 2007, 80, 1055-1063.	2.6	184
44	Epididymal expression of the forkhead transcription factor Foxil is required for male fertility. EMBO Journal, 2006, 25, 4131-4141.	3.5	102
45	Adipocyte-Specific Overexpression of FOXC2 Prevents Diet-Induced Increases in Intramuscular Fatty Acyl CoA and Insulin Resistance. Diabetes, 2005, 54, 1657-1663.	0.3	68
46	Expression of FOXC2 in adipose and muscle and its association with whole body insulin sensitivity. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E799-E803.	1.8	28
47	Distal renal tubular acidosis in mice that lack the forkhead transcription factor Foxi1. Journal of Clinical Investigation, 2004, 113, 1560-1570.	3.9	175
48	Reduced Expression of FOXC2 and Brown Adipogenic Genes in Human Subjects with Insulin Resistance. Obesity, 2003, 11, 1182-1191.	4.0	124
49	Lack of pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of Foxi1 null mutant mice. Development (Cambridge), 2003, 130, 2013-2025.	1.2	169
50	FOXC2 mRNA Expression and a 5' Untranslated Region Polymorphism of the Gene Are Associated With Insulin Resistance. Diabetes, 2002, 51, 3554-3560.	0.3	61
51	Insulin and TNFα Induce Expression of the Forkhead Transcription Factor Gene <i>Foxc2</i> in 3T3-L1 Adipocytes via PI3K and ERK 1/2-Dependent Pathways. Molecular Endocrinology, 2002, 16, 873-883.	3.7	51
52	FOXC2 Is a Winged Helix Gene that Counteracts Obesity, Hypertriglyceridemia, and Diet-Induced Insulin Resistance. Cell, 2001, 106, 563-573.	13.5	500
53	Forkhead transcription factorFoxF2 is expressed in mesodermal tissues involved in epithelio-mesenchymal interactions., 2000, 218, 136-149.		92
54	Increased expression of the transcription factors CCAAT-enhancer binding protein-? (C/EB?) and C/EBP? (CHOP) correlate with invasiveness of human colorectal cancer., 2000, 86, 337-343.		105

Sven Enerbã**e**k

#	Article	IF	CITATIONS
55	The winged helix transcription factor Fkh10 is required for normal development of the inner ear. Nature Genetics, 1998, 20, 374-376.	9.4	91
56	Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature, 1997, 387, 90-94.	13.7	1,251
57	E-cadherin expression in human epithelial ovarian cancer and normal ovary. , 1997, 74, 275-280.		151