Keiichi Namba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8575213/publications.pdf

Version: 2024-02-01

567281 552781 32 856 15 26 citations h-index g-index papers 43 43 43 869 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Multiple electron transfer pathways of tungsten-containing formate dehydrogenase in direct electron transfer-type bioelectrocatalysis. Chemical Communications, 2022, 58, 6478-6481.	4.1	10
2	The FlgN chaperone activates the Na+-driven engine of the Salmonella flagellar protein export apparatus. Communications Biology, 2021, 4, 335.	4.4	13
3	Cryo-EM structure of a functional monomeric Photosystem I from Thermosynechococcus elongatus reveals red chlorophyll cluster. Communications Biology, 2021, 4, 304.	4.4	25
4	A positive charge region of Salmonella Flil is required for ATPase formation and efficient flagellar protein export. Communications Biology, 2021, 4, 464.	4.4	12
5	The structure of MgtE in the absence of magnesium provides new insights into channel gating. PLoS Biology, 2021, 19, e3001231.	5.6	8
6	Membrane voltage-dependent activation mechanism of the bacterial flagellar protein export apparatus. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2026587118.	7.1	11
7	The FlhA linker mediates flagellar protein export switching during flagellar assembly. Communications Biology, 2021, 4, 646.	4.4	16
8	Recent Advances in the Bacterial Flagellar Motor Study. Biomolecules, 2021, 11, 741.	4.0	0
9	Structure of the molecular bushing of the bacterial flagellar motor. Nature Communications, 2021, 12, 4469.	12.8	33
10	Native flagellar MS ring is formed by 34 subunits with 23-fold and 11-fold subsymmetries. Nature Communications, 2021, 12, 4223.	12.8	34
11	Chained Structure of Dimeric F ₁ -like ATPase in Mycoplasma mobile Gliding Machinery. MBio, 2021, 12, e0141421.	4.1	15
12	Cryoâ€EM structure of the CENPâ€A nucleosome in complex with phosphorylated CENPâ€C. EMBO Journal, 2021, 40, e105671.	7.8	35
13	Structure of the bacterial flagellar hook cap provides insights into a hook assembly mechanism. Communications Biology, 2021, 4, 1291.	4.4	6
14	Cardiac muscle thin filament structures reveal calcium regulatory mechanism. Nature Communications, 2020, 11, 153.	12.8	145
15	Direct observation of speed fluctuations of flagellar motor rotation at extremely low load close to zero. Molecular Microbiology, 2020, 113, 755-765.	2.5	11
16	Immunodominant proteins P1 and P40/P90 from human pathogen Mycoplasma pneumoniae. Nature Communications, 2020, 11, 5188.	12.8	22
17	A proposed gear mechanism for torque generation in the flagellar motor. Nature Structural and Molecular Biology, 2020, 27, 1004-1006.	8.2	2
18	GFP Fusion to the N-Terminus of MotB Affects the Proton Channel Activity of the Bacterial Flagellar Motor in Salmonella. Biomolecules, 2020, 10, 1255.	4.0	3

#	Article	IF	Citations
19	The flexible linker of the secreted FliK ruler is required for export switching of the flagellar protein export apparatus. Scientific Reports, 2020, 10, 838.	3.3	16
20	Structural and Functional Comparison of Salmonella Flagellar Filaments Composed of FljB and FliC. Biomolecules, 2020, 10, 246.	4.0	35
21	In Vitro Autonomous Construction of the Flagellar Axial Structure in Inverted Membrane Vesicles. Biomolecules, 2020, 10, 126.	4.0	9
22	Architecture of the Bacterial Flagellar Distal Rod and Hook of Salmonella. Biomolecules, 2019, 9, 260.	4.0	15
23	Structure of Salmonella Flagellar Hook Reveals Intermolecular Domain Interactions for the Universal Joint Function. Biomolecules, 2019, 9, 462.	4.0	16
24	Refined Mechanism of Mycoplasma mobile Gliding Based on Structure, ATPase Activity, and Sialic Acid Binding of Machinery. MBio, 2019, 10, .	4.1	17
25	Structure of the native supercoiled flagellar hook as a universal joint. Nature Communications, 2019, 10, 5295.	12.8	28
26	Insight into structural remodeling of the FlhA ring responsible for bacterial flagellar type III protein export. Science Advances, 2018, 4, eaao7054.	10.3	50
27	Novel insights into the mechanism of well-ordered assembly of bacterial flagellar proteins in Salmonella. Scientific Reports, 2018, 8, 1787.	3.3	36
28	Structure of actomyosin rigour complex at 5.2 Å resolution and insights into the ATPase cycle mechanism. Nature Communications, 2017, 8, 13969.	12.8	70
29	Identical folds used for distinct mechanical functions of the bacterial flagellar rod and hook. Nature Communications, 2017, 8, 14276.	12.8	60
30	Na ⁺ -induced structural transition of MotPS for stator assembly of the <i>Bacillus</i> flagellar motor. Science Advances, 2017, 3, eaao4119.	10.3	44
31	Periodicity in Attachment Organelle Revealed by Electron Cryotomography Suggests Conformational Changes in Gliding Mechanism of Mycoplasma pneumoniae. MBio, 2016, 7, e00243-16.	4.1	25
32	Structural Study of MPN387, an Essential Protein for Gliding Motility of a Human-Pathogenic Bacterium, Mycoplasma pneumoniae. Journal of Bacteriology, 2016, 198, 2352-2359.	2.2	15