
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8575096/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of the activity and stability of alkali-doped metal oxide catalysts for application to an intensified method of biodiesel production. Chemical Engineering Journal, 2008, 135, 63-70.	6.6	231
2	Assessing the potential of algal biomass opportunities for bioenergy industry: A review. Fuel, 2015, 143, 414-423.	3.4	168
3	Process intensification of biodiesel production using a continuous oscillatory flow reactor. Journal of Chemical Technology and Biotechnology, 2003, 78, 338-341.	1.6	165
4	Mixing Through Oscillations and Pulsations—A Guide to Achieving Process Enhancements in the Chemical and Process Industries. Chemical Engineering Research and Design, 2003, 81, 373-383.	2.7	148
5	Alkaline in situ transesterification of Chlorella vulgaris. Fuel, 2012, 94, 544-550.	3.4	137
6	Biodiesel production from indigenous microalgae grown in wastewater. Bioresource Technology, 2014, 154, 297-304.	4.8	135
7	Opportunities for low-grade heat recovery in the UK food processing industry. Applied Thermal Engineering, 2013, 53, 188-196.	3.0	125
8	Algal biomass as a global source of transport fuels: Overview and development perspectives. Progress in Natural Science: Materials International, 2014, 24, 329-339.	1.8	123
9	A sustainable integrated in situ transesterification of microalgae for biodiesel production and associated co-product-a review. Renewable and Sustainable Energy Reviews, 2016, 65, 1179-1198.	8.2	121
10	Recent advances in the synthesis of cyclic carbonates via CO2 cycloaddition to epoxides. Journal of Environmental Chemical Engineering, 2021, 9, 105113.	3.3	99
11	Non-thermal plasma as a promising route for the removal of tar from the product gas of biomass gasification – A critical review. Chemical Engineering Journal, 2020, 382, 122761.	6.6	93
12	Operation and Optimization of an Oscillatory Flow Continuous Reactor. Industrial & Engineering Chemistry Research, 2001, 40, 5371-5377.	1.8	91
13	Experimental analysis of local flame extinction in a turbulent jet diffusion flame by high repetition 2-D laser techniques and multi-scalar measurements. Proceedings of the Combustion Institute, 2005, 30, 701-709.	2.4	90
14	Evaluation of FAME production from wet marine and freshwater microalgae by in situ transesterification. Biochemical Engineering Journal, 2013, 76, 83-89.	1.8	89
15	A Mixing-Based Design Methodology for Continuous Oscillatory Flow Reactors. Chemical Engineering Research and Design, 2002, 80, 31-44.	2.7	87
16	Influence of various parameters on reactive extraction of Jatropha curcas L. for biodiesel production. Chemical Engineering Journal, 2011, 171, 1373-1378.	6.6	82
17	Synthesis of TiO2 nanoparticles in a spinning disc reactor. Chemical Engineering Journal, 2014, 258, 171-184.	6.6	78
18	Development and evaluation of novel designs of continuous mesoscale oscillatory baffled reactors. Chemical Engineering Journal, 2010, 159, 212-219.	6.6	73

#	Article	IF	CITATIONS
19	Fluid Mechanics and Design Aspects of a Novel Oscillatory Flow Screening Mesoreactor. Chemical Engineering Research and Design, 2005, 83, 357-371.	2.7	68
20	Applied <i>in situ</i> product recovery in ABE fermentation. Biotechnology Progress, 2017, 33, 563-579.	1.3	67
21	Simultaneous Conversion of Triglyceride/Free Fatty Acid Mixtures into Biodiesel Using Sulfated Zirconia. Topics in Catalysis, 2010, 53, 773-782.	1.3	65
22	Direct production of biodiesel from rapeseed by reactive extraction/in situ transesterification. Fuel Processing Technology, 2012, 102, 53-60.	3.7	64
23	Rapid process development using oscillatory baffled mesoreactors – A state-of-the-art review. Chemical Engineering Journal, 2015, 265, 110-121.	6.6	63
24	Biological processing in oscillatory baffled reactors: operation, advantages and potential. Interface Focus, 2013, 3, 20120036.	1.5	62
25	Temperature dependence of non-thermal plasma assisted hydrocracking of toluene to lower hydrocarbons in a dielectric barrier discharge reactor. Chemical Engineering Journal, 2019, 356, 1062-1069.	6.6	56
26	Decomposition of benzene as a tar analogue in CO2 and H2 carrier gases, using a non-thermal plasma. Chemical Engineering Journal, 2019, 360, 714-720.	6.6	56
27	Rapid Production of Biodiesel in Mesoscale Oscillatory Baffled Reactors. Chemical Engineering and Technology, 2012, 35, 1214-1220.	0.9	55
28	Characterisation of mesoscale oscillatory helical baffled reactor—Experimental approach. Chemical Engineering Journal, 2012, 180, 229-236.	6.6	55
29	Continuous screening of base-catalysed biodiesel production using New designs of mesoscale oscillatory baffled reactors. Fuel Processing Technology, 2011, 92, 1560-1567.	3.7	51
30	Numerical study of the flow pattern and heat transfer enhancement in oscillatory baffled reactors with helical coil inserts. Chemical Engineering Research and Design, 2012, 90, 732-742.	2.7	50
31	Kinetic of myristic acid esterification with methanol in the presence of triglycerides over sulfated zirconia. Renewable Energy, 2011, 36, 2679-2686.	4.3	49
32	Highly selective, sustainable synthesis of limonene cyclic carbonate from bio-based limonene oxide and CO2: A kinetic study. Journal of CO2 Utilization, 2019, 29, 126-133.	3.3	49
33	Intensified one-step biodiesel production from high water and free fatty acid waste cooking oils. Fuel, 2018, 220, 567-574.	3.4	48
34	Role of CO ₂ in the Conversion of Toluene as a Tar Surrogate in a Nonthermal Plasma Dielectric Barrier Discharge Reactor. Energy & Fuels, 2018, 32, 5164-5170.	2.5	48
35	Production of biodiesel from waste shark liver oil for biofuel applications. Renewable Energy, 2020, 145, 99-105.	4.3	48
36	A more robust model of the biodiesel reaction, allowing identification of process conditions for significantly enhanced rate and water tolerance. Bioresource Technology, 2014, 156, 222-231.	4.8	47

ADAM P HARVEY

#	Article	IF	CITATIONS
37	Bio-crude oil production using catalytic hydrothermal liquefaction (HTL) from native microalgae harvested by ozone-flotation. Fuel, 2019, 241, 255-263.	3.4	46
38	Plasma-assisted decomposition of a biomass gasification tar analogue into lower hydrocarbons in a synthetic product gas using a dielectric barrier discharge reactor. Fuel, 2019, 235, 1412-1419.	3.4	46
39	Microalgae harvesting using ozoflotation: Effect on lipid and FAME recoveries. Biomass and Bioenergy, 2014, 70, 356-363.	2.9	45
40	Technologies for measurement and mitigation of particulate emissions from domestic combustion of biomass: A review. Renewable and Sustainable Energy Reviews, 2015, 49, 574-584.	8.2	44
41	Characterization and optimization of an oscillatory baffled reactor (OBR) for ozone-water mass transfer. Chemical Engineering and Processing: Process Intensification, 2014, 84, 82-89.	1.8	41
42	Kinetic investigations of styrene carbonate synthesis from styrene oxide and CO2 using a continuous flow tube-in-tube gas-liquid reactor. Journal of CO2 Utilization, 2018, 24, 341-349.	3.3	41
43	Simultaneous transesterification and esterification for biodiesel production with and without a sulphated zirconia catalyst. Fuel, 2012, 97, 467-475.	3.4	40
44	Heterogeneous catalysis in an oscillatory baffled flow reactor. Catalysis Science and Technology, 2013, 3, 2373.	2.1	40
45	A knowledge-based system for low-grade waste heat recovery in the process industries. Applied Thermal Engineering, 2016, 94, 590-599.	3.0	40
46	Combining continuous flow oscillatory baffled reactors and microwave heating: Process intensification and accelerated synthesis of metal-organic frameworks. Chemical Engineering Journal, 2019, 356, 170-177.	6.6	38
47	Biodiesel production by <i>in situ</i> transesterification. Biofuels, 2010, 1, 355-365.	1.4	37
48	Characterisation of fluid mixing in novel designs of mesoscale oscillatory baffled reactors operating at low flow rates (0.3–0.6ml/min). Chemical Engineering and Processing: Process Intensification, 2011, 50, 254-263.	1.8	37
49	Development of a selective, solvent-free epoxidation of limonene using hydrogen peroxide and a tungsten-based catalyst. Reaction Chemistry and Engineering, 2018, 3, 747-756.	1.9	37
50	Determination of the kinetics of biodiesel saponification in alcoholic hydroxide solutions. Fuel, 2015, 140, 724-730.	3.4	36
51	Kinetics and mechanistic investigation of epoxide/CO2 cycloaddition by a synergistic catalytic effect of pyrrolidinopyridinium iodide and zinc halides. Journal of Energy Chemistry, 2019, 37, 35-42.	7.1	36
52	Melting of phase change material assisted by expanded metal mesh. Applied Thermal Engineering, 2015, 90, 1052-1060.	3.0	35
53	A comparison of the energy use of in situ product recovery techniques for the Acetone Butanol Ethanol fermentation. Bioresource Technology, 2016, 220, 590-600.	4.8	34
54	Intensification of carboxylic acid esterification using a solid catalyst in a mesoscale oscillatory baffled reactor platform. Chemical Engineering Journal, 2017, 322, 205-214.	6.6	32

#	Article	IF	CITATIONS
55	Effect of geometrical parameters on fluid mixing in novel mesoscale oscillatory helical baffled designs. Chemical Engineering Journal, 2011, 169, 339-347.	6.6	31
56	Mass transfer enhancement as a function of oscillatory baffled reactor design. Chemical Engineering and Processing: Process Intensification, 2018, 130, 229-239.	1.8	31
57	Extractive recovery and valorisation of arsenic from contaminated soil through phytoremediation using Pteris cretica. Chemosphere, 2018, 208, 484-492.	4.2	31
58	Continuous reactive coupling of glycerol and acetone – A strategy for triglyceride transesterification and in-situ valorisation of glycerol by-product. Chemical Engineering Journal, 2018, 347, 41-51.	6.6	29
59	Methane conversion to H2 and higher hydrocarbons using non-thermal plasma dielectric barrier discharge reactor. Chemical Engineering and Processing: Process Intensification, 2019, 142, 107557.	1.8	29
60	Micromixing in oscillatory baffled flows. Chemical Engineering Journal, 2019, 361, 508-518.	6.6	29
61	Potential uses of oscillatory baffled reactors for biofuel production. Biofuels, 2010, 1, 605-619.	1.4	28
62	The role of heat pipes in intensified unit operations. Applied Thermal Engineering, 2013, 57, 147-153.	3.0	28
63	Microalgae for biofuels via thermochemical conversion processes: A review of cultivation, harvesting and drying processes, and the associated opportunities for integrated production. Bioresource Technology Reports, 2021, 14, 100676.	1.5	28
64	Reduced power consumption compared to a traditional stirred tank reactor (STR) for enzymatic saccharification of alpha-cellulose using oscillatory baffled reactor (OBR) technology. Chemical Engineering Research and Design, 2014, 92, 1969-1975.	2.7	27
65	Rapid determination of reaction order and rate constants of an imine synthesis reaction using a mesoscale oscillatory baffled reactor. Chemical Engineering Journal, 2013, 222, 282-291.	6.6	25
66	Oscillatory fluid motion unlocks plug flow operation in helical tube reactors at lower Reynolds numbers (Reâ€^â‰ a €~10). Chemical Engineering Journal, 2019, 358, 643-657.	6.6	25
67	Removal of cyclohexane as a toxic pollutant from air using a non-thermal plasma: Influence of different parameters. Journal of Environmental Chemical Engineering, 2021, 9, 105023.	3.3	25
68	Residence time distribution in multiorifice baffled tubes: A numerical study. Chemical Engineering Research and Design, 2017, 118, 259-269.	2.7	24
69	Scaleâ€up and Sustainability Evaluation of Biopolymer Production from Citrus Waste Offering Carbon Capture and Utilisation Pathway. ChemistryOpen, 2019, 8, 668-688.	0.9	24
70	Kinetics of fast alkali reactive extraction/in situ transesterification of Chlorella vulgaris that identifies process conditions for a significant enhanced rate and water tolerance. Fuel Processing Technology, 2016, 144, 212-219.	3.7	23
71	A kinetic study of Zn halide/TBAB-catalysed fixation of CO2 with styrene oxide in propylene carbonate. Green Processing and Synthesis, 2019, 8, 719-729.	1.3	23
72	Removal of benzene as a tar model compound from a gas mixture using non-thermal plasma dielectric barrier discharge reactor. Journal of the Energy Institute, 2021, 96, 97-105.	2.7	22

#	Article	IF	CITATIONS
73	Liquid culture of microalgae in a photobioreactor (PBR) based on oscillatory baffled reactor (OBR) technology – A feasibility study. Chemical Engineering Science, 2015, 138, 315-323.	1.9	21
74	A study of the flow structures generated by oscillating flows in a helical baffled tube. Chemical Engineering Science, 2017, 171, 160-178.	1.9	21
75	Scaleâ€Up of Oscillatory Helical Baffled Reactors Based on Residence Time Distribution. Chemical Engineering and Technology, 2017, 40, 907-914.	0.9	20
76	The melting of salt hydrate phase change material in an irregular metal foam for the application of traction transient cooling. Thermal Science and Engineering Progress, 2018, 5, 454-465.	1.3	20
77	Opportunities for process intensification in the UK water industry: A review. Journal of Water Process Engineering, 2018, 21, 116-126.	2.6	20
78	Multi-stimuli-responsive liquid marbles stabilized by superhydrophobic luminescent carbon dots for miniature reactors. Chemical Engineering Journal, 2020, 391, 123478.	6.6	19
79	Surfactant-assisted direct biodiesel production from wet Nannochloropsis occulata by in situ transesterification/reactive extraction. Biofuel Research Journal, 2016, 3, 366-371.	7.2	19
80	Triglyceride cracking for biofuel production using a directly synthesised sulphated zirconia catalyst. Bioresource Technology, 2011, 102, 6313-6316.	4.8	18
81	A comparison of the decomposition of biomass gasification tar compound in CO, CO2, H2 and N2 carrier gases using non-thermal plasma. Journal of the Energy Institute, 2021, 97, 161-168.	2.7	18
82	Experimental Determination of Optimal Conditions for Reactive Coupling of Biodiesel Production With in situ Glycerol Carbonate Formation in a Triglyceride Transesterification Process. Frontiers in Chemistry, 2018, 6, 625.	1.8	17
83	Kinetic study for styrene carbonate synthesis via CO2 cycloaddition to styrene oxide using silica-supported pyrrolidinopyridinium iodide catalyst. Journal of CO2 Utilization, 2021, 43, 101379.	3.3	16
84	Multiscale modelling of heterogeneously catalysed transesterification reaction process: an overview. RSC Advances, 2013, 3, 6226.	1.7	15
85	Effect of geometrical parameters on flow-switching frequencies in 3D printed fluidic oscillators containing different liquids. Chemical Engineering Research and Design, 2017, 117, 228-239.	2.7	15
86	Development of a more robust correlation for predicting heat transfer performance in oscillatory baffled reactors. Chemical Engineering and Processing: Process Intensification, 2018, 125, 133-138.	1.8	15
87	Low temperature conversion of toluene to methane using dielectric barrier discharge reactor. Fuel, 2019, 248, 258-261.	3.4	15
88	Effect of Methane as an Additive in the Product Gas toward the Formation of Lower Hydrocarbons during the Decomposition of a Tar Analogue. Energy & Fuels, 2020, 34, 1744-1749.	2.5	15
89	Techno-Economic Analysis of Glycerol Valorization via Catalytic Applications of Sulphonic Acid-Functionalized Copolymer Beads. Frontiers in Chemistry, 2019, 7, 882.	1.8	15
90	Intensification of hollow fiber membrane cross-flow filtration by the combination of helical baffle and oscillatory flow. Journal of Membrane Science, 2018, 554, 134-139.	4.1	14

ADAM P HARVEY

#	Article	IF	CITATIONS
91	Removal of Toluene as a Tar Analogue in a N ₂ Carrier Gas Using a Non-thermal Plasma Dielectric Barrier Discharge Reactor. Energy & Fuels, 2019, 33, 389-396.	2.5	14
92	Catalytic hydrothermal liquefaction of microalgae cultivated in wastewater: Influence of ozone-air flotation on products, energy balance and carbon footprint. Energy Conversion and Management, 2021, 249, 114806.	4.4	14
93	Decomposition of benzene as a biomass gasification tar in CH4 carrier gas using non-thermal plasma: Parametric and kinetic study. Journal of the Energy Institute, 2022, 102, 190-195.	2.7	14
94	Scale-Up of Gas–Liquid Mass Transfer in Oscillatory Multiorifice Baffled Reactors (OMBRs). Industrial & Engineering Chemistry Research, 2019, 58, 5929-5935.	1.8	13
95	Synthesis of trans-limonene bis-epoxide by stereoselective epoxidation of (R)-(+)-limonene. Journal of Environmental Chemical Engineering, 2021, 9, 104680.	3.3	13
96	Fast, non-extractive, and ultradeep desulfurization of diesel in an oscillatory baffled reactor. Chemical Engineering Research and Design, 2021, 152, 178-187.	2.7	13
97	Dimensionless evaluation and kinetics of rapid and ultradeep desulfurization of diesel fuel in an oscillatory baffled reactor. RSC Advances, 2022, 12, 14385-14396.	1.7	13
98	The characterization of a packed bed plasma reactor for ozone generation. Plasma Sources Science and Technology, 2020, 29, 035002.	1.3	12
99	Micro distributed energy system driven with preheated Croton megalocarpus oil – A performance and particulate emission study. Applied Energy, 2013, 112, 1383-1392.	5.1	11
100	Kinetics of reactive extraction/in situ transesterification of rapeseed oil. Fuel Processing Technology, 2014, 125, 34-40.	3.7	11
101	Direct Conversion of Benzene as a Tar Analogue to Methane Using Non-thermal Plasma. Energy & Fuels, 2019, 33, 2598-2601.	2.5	11
102	Decomposition of benzene vapour using non-thermal plasmas: The effect of moisture content on eliminating solid residue. Journal of Environmental Chemical Engineering, 2022, 10, 107767.	3.3	11
103	Techno-economic analysis of processes for biodiesel production with integrated co-production of higher added value products from glycerol. Biofuels, 2022, 13, 489-496.	1.4	10
104	Removal of toluene as a toxic VOC from methane gas using a non-thermal plasma dielectric barrier discharge reactor. RSC Advances, 2021, 11, 27583-27588.	1.7	10
105	Biorefining Based on Biodiesel Production: Chemical and Physical Characterisation of Reactively Extracted Rapeseed. Journal of Biobased Materials and Bioenergy, 2010, 4, 79-86.	0.1	10
106	Development of rapid and selective epoxidation of α-pinene using single-step addition of H ₂ O ₂ in an organic solvent-free process. RSC Advances, 2021, 11, 33027-33035.	1.7	10
107	Biodiesel Production through Acid Catalyst In Situ Reactive Extraction of Chlorella vulgaris Foamate. Energies, 2022, 15, 4482.	1.6	10
108	Intensification of Biobutanol Production in Batch Oscillatory Baffled Bioreactor. Procedia Engineering, 2012, 42, 1079-1087.	1.2	9

ADAM P HARVEY

#	Article	IF	CITATIONS
109	The development of helical vortex pairs in oscillatory flows – A numerical and experimental study. Chemical Engineering and Processing: Process Intensification, 2019, 143, 107588.	1.8	9
110	Coil-in-Coil Reactor: Augmenting Plug Flow Performance by Combining Different Geometric Features Using 3D Printing. Industrial & Engineering Chemistry Research, 2019, 58, 21363-21371.	1.8	9
111	Rapid Determination of the Residence Time Distribution (RTD) Function in an Oscillatory Baffled Reactor (OBR) Using a Design of Experiments (DoE) Approach. International Journal of Chemical Reactor Engineering, 2014, 12, 575-586.	0.6	8
112	Thermal performance of meso-scale oscillatory baffled reactors. Chemical Engineering and Processing: Process Intensification, 2018, 132, 25-33.	1.8	8
113	Bio-oil production by catalytic solvent liquefaction from a wild microalgae consortium. Biomass Conversion and Biorefinery, 2021, 11, 2627-2639.	2.9	8
114	Synthesis of cyclic α-pinane carbonate – a potential monomer for bio-based polymers. RSC Advances, 2022, 12, 17454-17465.	1.7	8
115	Plasma-assisted removal of methanol in N ₂ , dry and humidified air using a dielectric barrier discharge (DBD) reactor. RSC Advances, 2022, 12, 10997-11007.	1.7	7
116	The Production of Polyhydroxyalkanoates Using an Oscillatory Baffled Bioreactor. Chemical Product and Process Modeling, 2009, 4, .	0.5	6
117	Techno-economic comparison of a high-temperature heat pump and an organic Rankine cycle machine for low-grade waste heat recovery in UK industry. International Journal of Low-Carbon Technologies, 2013, 8, i47-i54.	1.2	6
118	Passive isothermalisation of an exothermic reaction in flow using a novel "Heat Pipe Oscillatory Baffled Reactor (HPOBR)― Chemical Engineering and Processing: Process Intensification, 2016, 110, 201-213.	1.8	6
119	Rapid Screening of an Acid atalyzed Triglyceride Transesterification in a Mesoscale Reactor. Chemical Engineering and Technology, 2019, 42, 539-548.	0.9	6
120	Aromatic free Fenton process for rapid removal of phenol from refinery wastewater in an oscillatory baffled reactor. Arabian Journal of Chemistry, 2022, 15, 103635.	2.3	6
121	Rapid Determination of the Reaction Kinetics of an n-Butylbenzaldimine Synthesis Using a Novel Mesoscale Oscillatory Baffled Reactor. Procedia Engineering, 2012, 42, 1527-1539.	1.2	5
122	A reactive coupling process for co-production of solketal and biodiesel. Green Processing and Synthesis, 2019, 8, 516-524.	1.3	5
123	Fuel ethanol production from cassava (<i>Manihot esculenta</i> Crantz) in an oscillatory baffled reactor. Biofuels, 2020, 11, 451-457.	1.4	5
124	A techno-economic analysis based upon a parametric study of alkali-catalysed biodiesel production from feedstocks with high free fatty acid and water contents. Biofuels, 2022, 13, 401-413.	1.4	5
125	Reactors. , 2013, , 121-204.		4
126	Enzymatic saccharification of cellulose: a study of mixing and agitation in an oscillatory baffled reactor and a stirred tank reactor. Biofuels, 2015, 6, 203-208.	1.4	4

#	Article	IF	CITATIONS
127	Intensification of epoxidation of vegetable oils using a continuous mesoscale oscillatory baffled reactor. Journal of Advanced Manufacturing and Processing, 2020, 2, .	1.4	4
128	<i>In Situ</i> Transesterification of Wet Marine and Fresh Water Microalgae for Biodiesel Production and Its Effect on the Algal Residue. Journal of Sustainable Bioenergy Systems, 2016, 06, 17-30.	0.2	4
129	Continuous process for the epoxidation of terpenes using mesoscale oscillatory baffled reactors. Chemical Engineering and Processing: Process Intensification, 2022, 177, 108998.	1.8	4
130	The mesoscale oscillatory baffled reactor facilitates intensified kinetics screening when the solvent is removed. Chemical Engineering and Processing: Process Intensification, 2018, 129, 51-62.	1.8	3
131	Oscillating flow bioreactors: An enabling technology for sustainable biorefining operations?. Journal of Advanced Manufacturing and Processing, 2020, 2, .	1.4	3
132	Oscillatory Flow Bioreactor (OFB) Applied in Enzymatic Hydrolysis at High Solid Loadings. Chemical and Biochemical Engineering Quarterly, 2020, 33, 459-470.	0.5	3
133	Performance, Emissions and Durability Studies on Diesel Engine Fuelled with a Preheated Raw Microalgal Oil. Proceedings (mdpi), 2020, 58, 4.	0.2	3
134	Use of dolomite catalyst in biodiesel production via transesterification of waste cooking oil in oscillatory baffled reactor. AICHE Journal, 2022, 68, .	1.8	3
135	A Stereoselective Route to R-(+)-Limonene-Based Non-isocyanate Poly(hydroxyurethanes). Journal of Polymers and the Environment, 2022, 30, 4452-4462.	2.4	3
136	Oxidative removal of hexane from the gas stream by dielectric barrier discharge reactor and effect of gas environment. Chemical Engineering and Processing: Process Intensification, 2022, 178, 109035.	1.8	3
137	Intensification of Biofuel Production. , 2012, , 205-215.		2
138	Process Intensification in a Business Context: General Considerations. , 2013, , 355-367.		1
139	Effect of oscillation amplitude on the residence time distribution for the mesoscale oscillatory baffled reactor. Chemical Engineering Research Bulletin, 2017, 19, 111.	0.2	1
140	Process intensification of microalgal biofuel production. , 2022, , 269-290.		1
141	Specifying, Manufacturing and Operating PI Plant. , 2013, , 437-542.		Ο