Thomas G Spiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8574656/publications.pdf

Version: 2024-02-01

759233 713466 23 752 12 21 h-index citations g-index papers 23 23 23 1093 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Metallo-inhibition of Mnx, a bacterial manganese multicopper oxidase complex. Journal of Inorganic Biochemistry, 2021, 224, 111547.	3.5	3
2	Alternative modes of O2 activation in P450 and NOS enzymes are clarified by DFT modeling and resonance Raman spectroscopy. Journal of Inorganic Biochemistry, 2020, 207, 111054.	3.5	5
3	Computational Studies of Catalytic Loop Dynamics in <i>Yersinia</i> Protein Tyrosine Phosphatase Using Pathway Optimization Methods. Journal of Physical Chemistry B, 2019, 123, 7840-7851.	2.6	4
4	Biogenic and Synthetic MnO ₂ Nanoparticles: Size and Growth Probed with Absorption and Raman Spectroscopies and Dynamic Light Scattering. Environmental Science & En	10.0	63
5	Photoinduced charge flow inside an iron porphyrazine complex. Chemical Communications, 2019, 55, 13606-13609.	4.1	8
6	Activity-Related Microsecond Dynamics Revealed by Temperature-Jump Förster Resonance Energy Transfer Measurements on Thermophilic Alcohol Dehydrogenase. Journal of the American Chemical Society, 2018, 140, 900-903.	13.7	25
7	Mn(III) species formed by the multi-copper oxidase MnxG investigated by electron paramagnetic resonance spectroscopy. Journal of Biological Inorganic Chemistry, 2018, 23, 1093-1104.	2.6	8
8	Copper Binding Sites in the Manganese-Oxidizing Mnx Protein Complex Investigated by Electron Paramagnetic Resonance Spectroscopy. Journal of the American Chemical Society, 2017, 139, 8868-8877.	13.7	14
9	Mn(II) Oxidation by the Multicopper Oxidase Complex Mnx: A Coordinated Two-Stage Mn(II)/(III) and Mn(III)/(IV) Mechanism. Journal of the American Chemical Society, 2017, 139, 11381-11391.	13.7	58
10	Mn(II) Oxidation by the Multicopper Oxidase Complex Mnx: A Binuclear Activation Mechanism. Journal of the American Chemical Society, 2017, 139, 11369-11380.	13.7	39
11	Temperature-Jump Fluorescence Provides Evidence for Fully Reversible Microsecond Dynamics in a Thermophilic Alcohol Dehydrogenase. Journal of the American Chemical Society, 2015, 137, 10060-10063.	13.7	19
12	Multicopper manganese oxidase accessory proteins bind Cu and heme. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1853-1859.	2.3	24
13	Mn(II) Binding and Subsequent Oxidation by the Multicopper Oxidase MnxG Investigated by Electron Paramagnetic Resonance Spectroscopy. Journal of the American Chemical Society, 2015, 137, 10563-10575.	13.7	17
14	Ultrafast Charge Transfer in Nickel Phthalocyanine Probed by Femtosecond Raman-Induced Kerr Effect Spectroscopy. Journal of the American Chemical Society, 2014, 136, 8746-8754.	13.7	23
15	CO, NO and O2 as vibrational probes of heme protein interactions. Coordination Chemistry Reviews, 2013, 257, 511-527.	18.8	128
16	Cysteineâ€inked aromatic nitriles as UV resonance Raman probes of protein structure. Journal of Raman Spectroscopy, 2012, 43, 1244-1249.	2.5	11
17	Ambidentate H-bonding of NO and O2 in heme proteins. Journal of Inorganic Biochemistry, 2012, 115, 204-210.	3.5	8
18	Bacteriogenic Manganese Oxides. Accounts of Chemical Research, 2010, 43, 2-9.	15.6	213

THOMAS G SPIRO

#	Article	IF	CITATION
19	Co-Evolution Of Lasers And Raman Spectroscopy: A Personal Account. , 2010, , .		0
20	Early Steps in Cytochrome C Unfolding Probed by Nanosecond Laser Induced T-jumpâ [•] UV Resonance Raman Spectroscopy. , 2010, , .		0
21	Quaternary Speeding in Hemoglobin. Journal of Molecular Biology, 2010, 400, 949-950.	4.2	5
22	A Twist on Heme Signaling. ACS Chemical Biology, 2008, 3, 673-675.	3.4	9
23	Resonance Raman characterization of the radical anion and triplet states of zinc tetraphenylporphine. The Journal of Physical Chemistry, 1991, 95, 9720-9727.	2.9	68