
Igor V Bartish

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8574278/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Andean orogeny and the diversification of lowland neotropical rain forest trees: A case study in Sapotaceae. Global and Planetary Change, 2021, 201, 103481.	3.5	3
2	Disturbed habitats locally reduce the signal of deep evolutionary history in functional traits of plants. New Phytologist, 2021, 232, 1849-1862.	7.3	7
3	Anthropogenic threats to evolutionary heritage of angiosperms in the Netherlands through an increase in highâ€competition environments. Conservation Biology, 2020, 34, 1536-1548.	4.7	3
4	Significance of Photosynthetic Characters in the Evolution of Asian Gnetum (Gnetales). Frontiers in Plant Science, 2019, 10, 39.	3.6	7
5	Functionally or phylogenetically distinct neighbours turn antagonism among decomposing litter species into synergy. Journal of Ecology, 2018, 106, 1401-1414.	4.0	10
6	Climatic Changes and Orogeneses in the Late Miocene of Eurasia: The Main Triggers of an Expansion at a Continental Scale?. Frontiers in Plant Science, 2018, 9, 1400.	3.6	12
7	High temperature and UV-C treatments affect stilbenoid accumulation and related gene expression levels in Gnetum parvifolium. Electronic Journal of Biotechnology, 2017, 25, 43-49.	2.2	24
8	Benefits from living together? Clades whose species use similar habitats may persist as a result of ecoâ€evolutionary feedbacks. New Phytologist, 2017, 213, 66-82.	7.3	18
9	Transcriptome Characterization of Gnetum parvifolium Reveals Candidate Genes Involved in Important Secondary Metabolic Pathways of Flavonoids and Stilbenoids. Frontiers in Plant Science, 2016, 7, 174.	3.6	42
10	Different habitats within a region contain evolutionary heritage from different epochs depending on the abiotic environment. Global Ecology and Biogeography, 2016, 25, 274-285.	5.8	15
11	Ecologically diverse and distinct neighbourhoods trigger persistent phenotypic consequences, and amine metabolic profiling detects them. Journal of Ecology, 2016, 104, 125-137.	4.0	5
12	The Evolutionary Legacy of Diversification Predicts Ecosystem Function. American Naturalist, 2016, 188, 398-410.	2.1	14
13	â€~Highâ€coâ€occurrence genera': weak but consistent relationships with global richness, niche partitioning, hybridization and decline. Global Ecology and Biogeography, 2016, 25, 55-64.	5.8	10
14	An Ancient Medicinal Plant at the Crossroads of Modern Horticulture and Genetics: Genetic Resources and Biotechnology of Sea Buckthorn (Hippophae L., Elaeagnaceae). Sustainable Development and Biodiversity, 2016, , 415-446.	1.7	7
15	Larger phylogenetic distances in litter mixtures: lower microbial biomass and higher C/N ratios but equal mass loss. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150103.	2.6	16
16	Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology, 2015, 29, 600-614.	3.6	396
17	Enemy damage of exotic plant species is similar to that of natives and increases with productivity. Journal of Ecology, 2013, 101, 388-399.	4.0	27
18	Specialists leave fewer descendants within a region than generalists. Global Ecology and Biogeography, 2013, 22, 213-222.	5.8	23

IGOR V BARTISH

#	Article	IF	CITATIONS
19	Phylogeny and colonization history of Pringlea antiscorbutica (Brassicaceae), an emblematic endemic from the South Indian Ocean Province. Molecular Phylogenetics and Evolution, 2012, 65, 748-756.	2.7	19
20	Disparate relatives: Life histories vary more in genera occupying intermediate environments. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14, 283-301.	2.7	33
21	Out of the Qinghai–Tibet Plateau: evidence for the origin and dispersal of Eurasian temperate plants from a phylogeographic study of <i>Hippophaë rhamnoides</i> (Elaeagnaceae). New Phytologist, 2012, 194, 1123-1133.	7.3	156
22	Phylogenetically Poor Plant Communities Receive More Alien Species, Which More Easily Coexist with Natives. American Naturalist, 2011, 177, 668-680.	2.1	79
23	Vicariance or long-distance dispersal: historical biogeography of the pantropical subfamily Chrysophylloideae (Sapotaceae). Journal of Biogeography, 2011, 38, 177-190.	3.0	82
24	Species pools along contemporary environmental gradients represent different levels of diversification. Journal of Biogeography, 2010, 37, 2317-2331.	3.0	17
25	Effects of population size on genetic diversity, fitness and pollinator community composition in fragmented populations of Anthericum liliago L. Plant Ecology, 2008, 198, 101-110.	1.6	32
26	Phylogeny and generic limits in the Niemeyera complex of New Caledonian Sapotaceae: evidence of multiple origins of the anisomerous flower. Molecular Phylogenetics and Evolution, 2008, 49, 909-929.	2.7	37
27	Multiâ€gene phylogeny of the pantropical subfamily Chrysophylloideae (Sapotaceae): evidence of generic polyphyly and extensive morphological homoplasy. Cladistics, 2008, 24, 1006-1031.	3.3	64
28	Molecular phylogeny of <i>Planchonella</i> (Sapotaceae) and eight new species from New Caledonia. Taxon, 2007, 56, 329-354.	0.7	54
29	Phylogeny, diagnostic characters and generic limitation of Australasian Chrysophylloideae (Sapotaceae, Ericales): evidence from ITS sequence data and morphology. Cladistics, 2007, 23, 201-228.	3.3	49
30	Analysis of genetic diversity in the endangered tropical tree species Hagenia abyssinica using ISSR markers. Genetic Resources and Crop Evolution, 2007, 54, 947-958.	1.6	49
31	Late Quaternary history ofHippophaë rhamnoidesL. (Elaeagnaceae) inferred from chalcone synthase intron (Chsi) sequences and chloroplast DNA variation. Molecular Ecology, 2006, 15, 4065-4083.	3.9	58
32	RAPD analysis of diploid and tetraploid populations of Aronia points to different reproductive strategies within the genus. Hereditas, 2005, 141, 301-312.	1.4	32
33	RAPD-based Analysis of Genetic Diversity and Selection of Lingonberry (Vaccinium vitis-idaea L.) Material for ex situ Conservation. Genetic Resources and Crop Evolution, 2005, 52, 723-735.	1.6	31
34	Phylogenetic relationships among New Caledonian Sapotaceae (Ericales): molecular evidence for generic polyphyly and repeated dispersal. American Journal of Botany, 2005, 92, 667-673.	1.7	85
35	Contrasting patterns of spatial genetic structure of diploid and triploid populations of the clonal aquatic species,Butomus umbellatus (Butomaceae), in Central Europe. Folia Geobotanica, 2004, 39, 13-26.	0.9	5
36	Comparison of differentiation estimates based on morphometric and molecular data, exemplified by various leaf shape descriptors and RAPDs in the genus Chaenomeles (Rosaceae). Taxon, 2002, 51, 69-82.	0.7	21

IGOR V BARTISH

#	Article	IF	CITATIONS
37	Taxonomic synopsis of Hippophae (Elaeagnaceae). Nordic Journal of Botany, 2002, 22, 369-374.	0.5	41
38	Title is missing!. Plant Systematics and Evolution, 2002, 235, 1-17.	0.9	26
39	Genetic structure detected in a small population of the endangered plant Anthericum liliago (Anthericaceae) by RAPD analysis. Ecography, 2002, 25, 677-684.	4.5	9
40	RAPD analysis of interspecific relationships in presumably apomictic Cotoneaster species. Euphytica, 2001, 120, 273-280.	1.2	27
41	Combined analyses of RAPDs, cpDNA and morphology demonstrate spontaneous hybridization in the plant genus Chaenomeles. Heredity, 2000, 85, 383-392.	2.6	16
42	Inter- and intraspecific genetic variation inHippophae (Elaeagnaceae) investigated by RAPD markers. Plant Systematics and Evolution, 2000, 225, 85-101.	0.9	57
43	Phylogenetic relationships and differentiation among and within populations of Chaenomeles Lindl. (Rosaceae) estimated with RAPDs and isozymes. Theoretical and Applied Genetics, 2000, 101, 554-563.	3.6	83
44	Genetic relationships in Chaenomeles (Rosaceae) revealed by isozyme analysis. Scientia Horticulturae, 2000, 85, 21-35.	3.6	13
45	Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspectives in Plant Ecology, Evolution and Systematics, 2000, 3, 93-114.	2.7	676
46	Genetic diversity inChaenomeles (Rosaceae) revealed by RAPD analysis. Plant Systematics and Evolution, 1999, 214, 131-145.	0.9	24
47	Population genetic structure in the dioecious pioneer plant species Hippophae rhamnoides investigated by random amplified polymorphic DNA (RAPD) markers. Molecular Ecology, 1999, 8, 791-802.	3.9	110
48	A NEW APPROACH TO OBTAIN POLYPLOID FORMS OF APPLE. Acta Horticulturae, 1998, , 561-564.	0.2	3
49	THE USE OF INTERSPECIFIC CROSSES IN MALUS TO MAP THE GENES OF CHARACTERS IMPORTANT FOR APPLE ROOTSTOCK BREEDING. Acta Horticulturae, 1998, , 319-324.	0.2	3
50	GTPase activity of bacteriophage T4 sheath protein. Journal of Molecular Biology, 1992, 223, 23-25.	4.2	5