Hongxia Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8574195/publications.pdf Version: 2024-02-01

HONCYLA DEN

#	Article	IF	CITATIONS
1	FoxO1 Target Gpr17 Activates AgRP Neurons to Regulate Food Intake. Cell, 2012, 149, 1314-1326.	28.9	164
2	Diabetes in Mice With Selective Impairment of Insulin Action in Glut4-Expressing Tissues. Diabetes, 2011, 60, 700-709.	0.6	48
3	Gpr17 in AgRP Neurons Regulates Feeding and Sensitivity to Insulin and Leptin. Diabetes, 2015, 64, 3670-3679.	0.6	33
4	Anorexia and Impaired Glucose Metabolism in Mice With Hypothalamic Ablation of Glut4 Neurons. Diabetes, 2015, 64, 405-417.	0.6	28
5	Glut4 expression defines an insulin-sensitive hypothalamic neuronal population. Molecular Metabolism, 2014, 3, 452-459.	6.5	27
6	Blunted Refeeding Response and Increased Locomotor Activity in Mice Lacking FoxO1 in Synapsin- <i>Cre</i> –Expressing Neurons. Diabetes, 2013, 62, 3373-3383.	0.6	21
7	Metabolic Defects Caused by High-Fat Diet Modify Disease Risk through Inflammatory and Amyloidogenic Pathways in a Mouse Model of Alzheimer's Disease. Nutrients, 2020, 12, 2977.	4.1	18
8	Gpr17 deficiency in POMC neurons ameliorates the metabolic derangements caused by long-term high-fat diet feeding. Nutrition and Diabetes, 2019, 9, 29.	3.2	14
9	Altered Central Nutrient Sensing in Male Mice Lacking Insulin Receptors in Glut4-expressing Neurons. Endocrinology, 2019, 160, 2038-2048.	2.8	9
10	A high-fat diet catalyzes progression to hyperglycemia in mice with selective impairment of insulin action in Glut4-expressing tissues. Journal of Biological Chemistry, 2022, 298, 101431.	3.4	8
11	Intestinal Gpr17 deficiency improves glucose metabolism by promoting GLP-1 secretion. Cell Reports, 2022, 38, 110179.	6.4	5
12	Human GPR17 missense variants identified in metabolic disease patients have distinct downstream signaling profiles. Journal of Biological Chemistry, 2021, 297, 100881.	3.4	3
13	High-Fat Diet Accelerates Pathological Progression and Intestinal Inflammation in a Type 2 Diabetes Rodent Model. Journal of the Endocrine Society, 2021, 5, A446-A446.	0.2	0
14	Mice Deficient for an Intestinal G Protein-Coupled Receptor Expression Have Increased Satiety During Rebound Hyperphagia. Journal of the Endocrine Society, 2021, 5, A52-A53.	0.2	0
15	Human GPR17 Nonsynonymous Variants Identified in Individuals with Metabolic Diseases Have Distinct Functional Signaling Profiles. Journal of the Endocrine Society, 2021, 5, A656-A656.	0.2	0