
## Wen-Jie Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8574131/publications.pdf Version: 2024-02-01



WENLIE SONG

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Postnatal development of subfields in the core region of the mouse auditory cortex. Hearing Research, 2021, 400, 108138.                                                                   | 2.0 | 1         |
| 2  | Region-dependent millisecond time-scale sensitivity in spectrotemporal integrations in guinea pig primary auditory cortex. Neuroscience, 2021, 480, 229-229.                               | 2.3 | 1         |
| 3  | Differential cortical and subcortical projection targets of subfields in the core region of mouse auditory cortex. Hearing Research, 2020, 386, 107876.                                    | 2.0 | 15        |
| 4  | Dynamic changes of timing precision in timed actions during a behavioural task in guinea pigs.<br>Scientific Reports, 2020, 10, 20079.                                                     | 3.3 | 0         |
| 5  | Tsukushi is essential for the development of the inner ear. Molecular Brain, 2020, 13, 29.                                                                                                 | 2.6 | 14        |
| 6  | Cue-dependent safety and fear learning in a discriminative auditory fear conditioning paradigm in the mouse. Learning and Memory, 2019, 26, 284-290.                                       | 1.3 | 8         |
| 7  | Mice deficient in protein tyrosine phosphatase receptor type Z (PTPRZ) show reduced responsivity to methamphetamine despite an enhanced response to novelty. PLoS ONE, 2019, 14, e0221205. | 2.5 | 1         |
| 8  | A novel role of the antitumor agent tricyclodecan-9-yl-xanthogenate as an open channel blocker of<br>KCNQ1/KCNE1. European Journal of Pharmacology, 2018, 824, 99-107.                     | 3.5 | 2         |
| 9  | Organization of auditory areas in the superior temporal gyrus of marmoset monkeys revealed by real-time optical imaging. Brain Structure and Function, 2018, 223, 1599-1614.               | 2.3 | 17        |
| 10 | Comparison of the Upper Marginal Neurons of Cortical Layer 2 with Layer 2/3 Pyramidal Neurons in<br>Mouse Temporal Cortex. Frontiers in Neuroanatomy, 2017, 11, 115.                       | 1.7 | 28        |
| 11 | Regulation of membrane KCNQ1/KCNE1 channel density by sphingomyelin synthase 1. American Journal of Physiology - Cell Physiology, 2016, 311, C15-C23.                                      | 4.6 | 6         |
| 12 | Identification of the somatosensory parietal ventral area and overlap of the somatosensory and auditory cortices in mice. Neuroscience Research, 2015, 99, 55-61.                          | 1.9 | 9         |
| 13 | The insular auditory field receives input from the lemniscal subdivision of the auditory thalamus in mice. Journal of Comparative Neurology, 2014, 522, 1373-1389.                         | 1.6 | 31        |
| 14 | Greenwood frequency–position relationship in the primary auditory cortex in guinea pigs.<br>Neurolmage, 2014, 89, 181-191.                                                                 | 4.2 | 7         |
| 15 | Deficiency of sphingomyelin synthaseâ€1 but not sphingomyelin synthaseâ€2 causes hearing impairments in mice. Journal of Physiology, 2012, 590, 4029-4044.                                 | 2.9 | 28        |
| 16 | Temporal Sequence of Visuo-Auditory Interaction in Multiple Areas of the Guinea Pig Visual Cortex.<br>PLoS ONE, 2012, 7, e46339.                                                           | 2.5 | 6         |
| 17 | Voltage-gated K+ channel KCNQ1 regulates insulin secretion in MIN6 β-cell line. Biochemical and<br>Biophysical Research Communications, 2011, 407, 620-625.                                | 2.1 | 72        |
| 18 | A train of electrical pulses applied to the primary auditory cortex evokes a conditioned response in guinea pigs. Neuroscience Research, 2011, 71, 103-106.                                | 1.9 | 4         |

Wen-Jie Song

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Identification and characterization of an insular auditory field in mice. European Journal of<br>Neuroscience, 2011, 34, 1944-1952.                                                            | 2.6 | 40        |
| 20 | Mitochondrial Dysfunction and Increased Reactive Oxygen Species Impair Insulin Secretion in Sphingomyelin Synthase 1-null Mice. Journal of Biological Chemistry, 2011, 286, 3992-4002.         | 3.4 | 129       |
| 21 | Nucleocytoplasmic translocation of HDAC9 regulates gene expression and dendritic growth in developing cortical neurons. European Journal of Neuroscience, 2010, 31, 1521-1532.                 | 2.6 | 75        |
| 22 | Spontaneous activity resembling tone-evoked activity in the primary auditory cortex of guinea pigs.<br>Neuroscience Research, 2010, 68, 107-113.                                               | 1.9 | 4         |
| 23 | New Field With Tonotopic Organization in Guinea Pig Auditory Cortex. Journal of Neurophysiology, 2007, 97, 927-932.                                                                            | 1.8 | 37        |
| 24 | Optical Recording of Retinal and Visual Cortical Responses Evoked by Electrical Stimulation on the Retina. IEEJ Transactions on Electronics, Information and Systems, 2007, 127, 1595-1602.    | 0.2 | 0         |
| 25 | A light-emitting diode light source for imaging of neural activities with voltage-sensitive dyes.<br>Neuroscience Research, 2006, 54, 230-234.                                                 | 1.9 | 16        |
| 26 | Cortical Intrinsic Circuits Can Support Activity Propagation through an Isofrequency Strip of the<br>Guinea Pig Primary Auditory Cortex. Cerebral Cortex, 2006, 16, 718-729.                   | 2.9 | 59        |
| 27 | Nonlinear and Noisy Extension of Independent Component Analysis: Theory and Its Application to a Pitch Sensation Model. Neural Computation, 2005, 17, 115-144.                                 | 2.2 | 9         |
| 28 | Conductance-Based Model of the Voltage-Dependent Generation of a Plateau Potential in Subthalamic<br>Neurons. Journal of Neurophysiology, 2004, 92, 255-264.                                   | 1.8 | 63        |
| 29 | Nigral GABAergic inhibition upon cholinergic neurons in the rat pedunculopontine tegmental nucleus. European Journal of Neuroscience, 2003, 18, 879-886.                                       | 2.6 | 49        |
| 30 | Rundown of a transient potassium current is attributable to changes in channel voltage dependence.<br>Synapse, 2003, 48, 57-65.                                                                | 1.2 | 3         |
| 31 | Isolation of neural activities from respiratory and heartbeat noises for in vivo optical recording in guinea pigs using independent component analysis. Neuroscience Letters, 2003, 352, 9-12. | 2.1 | 13        |
| 32 | Quantitative Relationship Between Kv4.2 mRNA and A-Type K+ Current in Rat Striatal Cholinergic<br>Interneurons During Development. Journal of Neurophysiology, 2003, 90, 175-183.              | 1.8 | 33        |
| 33 | Genes responsible for native depolarization-activated K+ currents in neurons. Neuroscience Research, 2002, 42, 7-14.                                                                           | 1.9 | 78        |
| 34 | Separation of signal and noise from in vivo optical recording in Guinea pigs using independent component analysis. Neuroscience Letters, 2001, 302, 137-140.                                   | 2.1 | 27        |
| 35 | Excitatory Postsynaptic Potentials Trigger a Plateau Potential in Rat Subthalamic Neurons at<br>Hyperpolarized States. Journal of Neurophysiology, 2001, 86, 1816-1825.                        | 1.8 | 56        |
| 36 | Quantification of mRNAs Expressed in a Single Neuron. Seibutsu Butsuri, 2001, 41, 309-311.                                                                                                     | 0.1 | 1         |

Wen-Jie Song

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Unique Properties of R-Type Calcium Currents in Neocortical and Neostriatal Neurons. Journal of Neurophysiology, 2000, 84, 2225-2236.                                                                                                            | 1.8 | 69        |
| 38 | Characterization of Ca2+ Channels in Rat Subthalamic Nucleus Neurons. Journal of Neurophysiology, 2000, 84, 2630-2637.                                                                                                                           | 1.8 | 63        |
| 39 | Adenosine Receptor Expression and Modulation of Ca2+Channels in Rat Striatal Cholinergic<br>Interneurons. Journal of Neurophysiology, 2000, 83, 322-332.                                                                                         | 1.8 | 55        |
| 40 | Properties of Q-Type Calcium Channels in Neostriatal and Cortical Neurons are Correlated with $\hat{I}^2$ Subunit Expression. Journal of Neuroscience, 1999, 19, 7268-7277.                                                                      | 3.6 | 62        |
| 41 | Development of Functional Topography in the Corticorubral Projection: An <i>In Vivo</i> Assessment<br>Using Synaptic Potentials Recorded from Fetal and Newborn Cats. Journal of Neuroscience, 1998, 18,<br>9354-9364.                           | 3.6 | 6         |
| 42 | Coordinated Expression of Dopamine Receptors in Neostriatal Medium Spiny Neurons. Advances in Pharmacology, 1997, 42, 1020-1023.                                                                                                                 | 2.0 | 24        |
| 43 | Preferential Termination of Corticorubral Axons on Spine-Like Dendritic Protrusions in Developing<br>Cat. Journal of Neuroscience, 1997, 17, 8792-8803.                                                                                          | 3.6 | 34        |
| 44 | D <sub>2</sub> Dopamine Receptors Reduce N-Type Ca <sup>2+</sup> Currents in Rat Neostriatal<br>Cholinergic Interneurons Through a Membrane-Delimited, Protein-Kinase-C-Insensitive Pathway.<br>Journal of Neurophysiology, 1997, 77, 1003-1015. | 1.8 | 241       |
| 45 | Coordinated Expression of Dopamine Receptors in Neostriatal Medium Spiny Neurons. Journal of Neuroscience, 1996, 16, 6579-6591.                                                                                                                  | 3.6 | 676       |
| 46 | Morphology of Individual Axons in Crossed Corticorubral Projections in Developing Cats and Effects of Partial Denervation. Developmental Neuroscience, 1996, 18, 162-173.                                                                        | 2.0 | 0         |
| 47 | Prenatal development of cerebrorubral and cerebellorubral projections in cats. Neuroscience<br>Letters, 1995, 200, 41-44.                                                                                                                        | 2.1 | 4         |
| 48 | An electrophysiological study of a transient ipsilateral interpositorubral projection in neonatal cats.<br>Experimental Brain Research, 1993, 92, 399-406.                                                                                       | 1.5 | 8         |
| 49 | Segregation of cerebrorubral and cerebellorubral synaptic inputs on rubrospinal neurons of fetal cats as demonstrated by intracellular recording. Neuroscience Letters, 1993, 159, 99-102.                                                       | 2.1 | 5         |
| 50 | Developing corticorubral axons of the cat form synapses on filopodial dendritic protrusions.<br>Neuroscience Letters, 1992, 147, 81-84.                                                                                                          | 2.1 | 33        |
| 51 | Plasticity of neuronal connections in developing brains of mammals. Neuroscience Research, 1992, 15, 235-253.                                                                                                                                    | 1.9 | 35        |
| 52 | Formation of crossed and uncrossed projections in the central nervous system. Neuroscience<br>Research Supplement: the Official Journal of the Japan Neuroscience Society, 1990, 13, S37-S42.                                                    | 0.0 | 1         |
| 53 | Ipsilateral interpositorubral projection in the kitten and its relation to post-hemicerebellectomy plasticity. Developmental Brain Research, 1990, 56, 75-85.                                                                                    | 1.7 | 14        |
| 54 | Climbing fibers are labelled after injection of PHA-L into the nucleus interpositus of the cat. Brain<br>Research, 1988, 463, 144-147.                                                                                                           | 2.2 | 4         |