List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8573660/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Indoles in Multicomponent Processes (MCPs). Chemical Reviews, 2012, 112, 3508-3549.	23.0	724
2	Bis- and Trisindolylmethanes (BIMs and TIMs). Chemical Reviews, 2010, 110, 2250-2293.	23.0	513
3	Surfactant-type catalysts in organic reactions. Tetrahedron, 2009, 65, 587-598.	1.0	122
4	Synthesis of pyranopyrazoles using isonicotinic acid as a dual and biological organocatalyst. RSC Advances, 2013, 3, 25681.	1.7	106
5	Advances in the application of N2O4/NO2 in organic reactions. Tetrahedron, 2010, 66, 9077-9106.	1.0	74
6	A new catalytic method for the preparation of bis-indolyl and tris-indolyl methanes in aqueous media. Catalysis Communications, 2007, 8, 173-178.	1.6	69
7	A catalytic and green procedure for Friedlander quinoline synthesis in aqueous media. Catalysis Communications, 2007, 8, 1214-1218.	1.6	56
8	An eco-friendly procedure for the synthesis of polysubstituted quinolines under aqueous media. Journal of Molecular Catalysis A, 2006, 259, 253-258.	4.8	49
9	Silica sulfuric acid as an efficient catalyst for the Friedläder quinoline synthesis from simple ketones and ortho-aminoaryl ketones under microwave irradiation. Journal of the Iranian Chemical Society, 2008, 5, 490-497.	1.2	46
10	Direct and regioselective iodination and bromination of benzene, naphthalene and other activated aromatic compounds using iodine and bromine or their sodium salts in the presence of the Fe(NO3)3·1.5N2O4/charcoal system. Tetrahedron Letters, 2003, 44, 8781-8785.	0.7	43
11	A simple and efficient route for the synthesis of di and tri(bis(indolyl) methanes) as new triarylmethanes. Molecular Diversity, 2008, 12, 203-207.	2.1	41
12	AN EFFICIENT PRO CEDURE FOR THE PREPARATION OF MONO, AND DI-BIS-INDOLYL METHANES CATALYZED BY MOLIBDATOPHOSPHORIC ACID. Phosphorus, Sulfur and Silicon and the Related Elements, 2004, 179, 2273-2277.	0.8	40
13	Iodineâ€Catalyzed Friedlander Quinoline Synthesis under Solventâ€Free Conditions. Journal of the Chinese Chemical Society, 2007, 54, 267-271.	0.8	38
14	Friedläder Annulation in the Synthesis of Azaheterocyclic Compounds. Advances in Heterocyclic Chemistry, 2011, 102, 139-227.	0.9	34
15	Synthesis of tetrahydropyridines by one-pot multicomponent reaction using nano-sphere silica sulfuric acid. Journal of the Iranian Chemical Society, 2015, 12, 855-861.	1.2	34
16	1,3-Dibromo-5,5-diethylbarbituric acid as an efficient catalyst for the protection of various alcohols with HMDS under solvent-free conditions. Catalysis Communications, 2007, 8, 917-920.	1.6	32
17	Palladium atalyzed Regioselective Synthesis of 3â€ (Hetero)Arylpropynamides from <i>gem</i> â€Dibromoalkenes and Isocyanides. Advanced Synthesis and Catalysis, 2019, 361, 118-125.	2.1	32
18	Application of silica vanadic acid as a heterogeneous, selective and highly reusable catalyst for ovidation of sulfides at room temperature, Journal of Molecular Catalysis A, 2013, 370, 80-86	4.8	31

#	Article	IF	CITATIONS
19	A new and facile access to the 2-(indol-3-yl)-3-nitriloquinolines based on FriedlÃ ¤ der annulations. Tetrahedron, 2012, 68, 6059-6064.	1.0	28
20	Palladium-catalyzed tandem reaction of 2-chloroquinoline-3-carbaldehydes and isocyanides. Organic and Biomolecular Chemistry, 2017, 15, 10073-10081.	1.5	28
21	Nitration of Aromatic Compounds by Zn(NO ₃) ₂ ·Â2N ₂ O ₄ and Its Charcoalâ€Supported System. Synthetic Communications, 2005, 35, 263-270.	1.1	23
22	Synthesis of arylidenepyruvic amide derivatives via Ugi-four component condensation. Tetrahedron Letters, 2012, 53, 3546-3549.	0.7	23
23	Efficient synthesis of novel functionalized pyrazolo-pyranoquinoline and tetrahydrodibenzo-[1,8]naphthyridinone derivatives. Tetrahedron, 2017, 73, 2116-2122.	1.0	23
24	A novel strategy for the synthesis of 6H-chromeno [4, 3-b] quinoline by intramolecular Heck cyclization. Tetrahedron, 2017, 73, 2501-2503.	1.0	23
25	The synthesis of iminothiophenone-fused quinolines and evaluation of their serendipitous reactions. RSC Advances, 2016, 6, 92235-92240.	1.7	22
26	Highly selective organocatalytic three-component reaction of 2-chloroquinoline-3-carbaldehydes, 6-aminouracils, and cyclic methylene active compounds. Tetrahedron Letters, 2016, 57, 5435-5438.	0.7	22
27	Arylidene pyruvic acids (APAs) in the synthesis of organic compounds. Tetrahedron, 2012, 68, 6593-6650.	1.0	19
28	Silica-bonded vanadic acid [SiO2–VO(OH)2] as a heterogeneous and recyclable catalyst for thiocyanation of organic compounds in aqueous media at room temperature. Catalysis Communications, 2012, 26, 34-38.	1.6	19
29	Synthesis and anti-bacterial evaluation of novel thio- and oxazepino[7,6-b]quinolines. Journal of the Iranian Chemical Society, 2015, 12, 2205-2212.	1.2	18
30	Epoxidation of aromatic α,β-unsaturated ketones using PVP–H2O2 under mild and heterogeneous conditions. Reactive and Functional Polymers, 2007, 67, 723-727.	2.0	17
31	Hydroarylation of cinnamic acid with phenols catalyzed by acidic ionic liquid [H-NMP]HSO4: computational assessment on substituent effect. Research on Chemical Intermediates, 2016, 42, 6407-6422.	1.3	17
32	Synthesis of new tripodal Hantzsch 1,4-dihydropyridines under solvent-free condition and their conversion to the corresponding tripodal pyridines. Molecular Diversity, 2010, 14, 809-813.	2.1	16
33	AlCl3 as a powerful catalyst for the one-pot preparation of 1,1,3-triheteroaryl compounds. Tetrahedron Letters, 2010, 51, 264-268.	0.7	16
34	Base-catalyzed cyclization of Ugi-adducts to substituted indolyl based γ-lactams. Monatshefte Für Chemie, 2014, 145, 1947-1952.	0.9	16
35	Transition metal-free synthesis of quinolino[2′,3′:3,4]pyrazolo[5,1-b]quinazolin-8(6H)-ones via cascade dehydrogenation and intramolecular N-arylation. Journal of the Iranian Chemical Society, 2016, 13, 2239-2246.	1.2	15
36	Molecular diversity in cyclization of Ugi-products leading to the synthesis of 2,5-diketopiperazines: computational study. Research on Chemical Intermediates, 2017, 43, 2119-2142.	1.3	15

#	Article	IF	CITATIONS
37	N2O4/SiO2 system as an efficient reagent for rapid and chemoselective conversion of trimethylsilyl ethers to the parent alcohols under nonaqueous conditions. Journal of the Iranian Chemical Society, 2008, 5, 90-95.	1.2	14
38	Transition Metal and Inner Transition Metal Catalyzed Amide Derivatives Formation through Isocyanide Chemistry. Synthesis, 2020, 52, 3162-3188.	1.2	13
39	Transition-metal free highly selective aerobic oxidation of hindered 2-alkylindoles. Tetrahedron, 2015, 71, 5531-5537.	1.0	12
40	Molybdatophosphoric acid as a catalyst for the methoxymethylation of alcohols under solvent-free conditions. Mendeleev Communications, 2005, 15, 165-166.	0.6	11
41	Synthesis of 2-amino-3-cyano 4-H-chromenes containing quinoline in water: computational study on substituent effects. Journal of the Iranian Chemical Society, 2017, 14, 823-832.	1.2	11
42	A novel and easy route to 1,3,4-thiadiazine derivatives via the three-component reaction of phenylhydrazine, α-bromo aryl ketones and aryl isothiocyanates. Tetrahedron Letters, 2013, 54, 6215-6217.	0.7	10
43	Prolinium Triflate: a protic ionic liquid which acts as water-tolerant catalyst in the alkylation of indoles. Journal of the Iranian Chemical Society, 2013, 10, 1019-1023.	1.2	10
44	Highly selective base-catalyzed ring closing Ugi-adducts from the reaction of 2-formylindole, 2-bromoacetic acid, amines and isocyanides. Journal of the Iranian Chemical Society, 2015, 12, 389-396.	1.2	10
45	A novel analogue of Asinger reaction for the synthesis of thiazinoquinoline derivatives. Monatshefte Für Chemie, 2017, 148, 315-320.	0.9	10
46	A Review of Cyanoacetyl Indoles (CAIs): Versatile Starting Materials in Organic Synthesis Current Organic Synthesis, 2013, 10, 737-750.	0.7	10
47	Synthesis of Novel Quinolineâ€substituted 1,4â€dihydropyridine Derivatives via Hantzsch Reaction in Aqueous Medium: Potential Bioactive Compounds. Journal of Heterocyclic Chemistry, 2017, 54, 131-136.	1.4	9
48	SiO2/N2O4 and Fe(NO3)3.9H2O/H3PMo12O40.xH2O Systems as Powerful Oxidants for Removal of Cyclic Dioxalanes and Dithianes. Letters in Organic Chemistry, 2006, 3, 305-308.	0.2	8
49	Analysis of trans-Resveratrol in Iranian Grape Cultivars by LC. Chromatographia, 2008, 67, 1017-1020.	0.7	8
50	Synthesis of four series of quinolineâ€based heterocycles by reacting 2â€chloroquinolineâ€3â€carbonitriles with various types of isocyanides. Applied Organometallic Chemistry, 2019, 33, e5024.	1.7	8
51	Dinitrogen Tetroxide: N2O4. Synlett, 2006, 2006, 1789-1790.	1.0	7
52	Tandem and transition metal-free synthesis of novel benzoimidazo-quinazoline as highly selective Hg2+ sensors. Research on Chemical Intermediates, 2018, 44, 2439-2449.	1.3	7
53	Effects of Nonionic Surfactants on Xanthan Gum Production: a Survey on Cellular Interactions. Iranian Journal of Biotechnology, 2018, 16, 60-66.	0.3	7
54	Isocyanide Reactions Toward the Synthesis of 3-(Oxazol-5-yl)Quinoline-2-Carboxamides and 5-(2-Tosylquinolin-3-yl)Oxazole. Frontiers in Chemistry, 2019, 7, 433.	1.8	7

#	Article	IF	CITATIONS
55	Mono and dibromo-5,5-diethylbarbituric acids for cleavage of trimethylsilyl ethers. Journal of the Brazilian Chemical Society, 2007, 18, 239-242.	0.6	6
56	Cascade synthesis of 2,4-disulfonylpyrroles by the sulfonylation/[2 + 3]-cycloaddition reactions of <i>gem</i> -dibromoalkenes with arylsulfonyl methyl isocyanides. RSC Advances, 2021, 11, 13292-13296.	1.7	6
57	Ferric Nitrate/Molibdatophosphoric Acid as a New and Efficient System in the Oxidative Deprotection of Trimethylsilyl Ethers to Corresponding Carbonyl Compounds under Solvent-Free Conditions. Journal of the Chinese Chemical Society, 2006, 53, 545-548.	0.8	5
58	Synthesis of Dendrimer‣ike Polyindolyl Compounds. Journal of Heterocyclic Chemistry, 2012, 49, 1429-1433.	1.4	5
59	A domino amino-lactonisation of arylidene pyruvic acids (APAs) byÂamines in aqueous media. Tetrahedron, 2013, 69, 3257-3263.	1.0	5
60	Participation of ethyl 3-formylindole-2-carboxylate with the Ugi four-component condensation reaction. Journal of the Iranian Chemical Society, 2014, 11, 85-90.	1.2	5
61	A Novel High Selective Colorimetric Chemosensor for Determination of Copper in Food Samples: Visual Detection. ChemistrySelect, 2020, 5, 13690-13693.	0.7	4
62	Quinoline-Based Polyazaheterocycles by a Hydrogen Peroxide-Mediated Isocyanide Insertion. Polycyclic Aromatic Compounds, 2021, 41, 676-684.	1.4	4
63	Cs2CO3-Mediated Regio- and Stereoselective Sulfonylation of 1,1-Dibromo-1-alkenes with Sodium Sulfinates. Synthesis, 2021, 53, 1149-1156.	1.2	4
64	Highly Selective Synthesis of α-Hydroxy, α-Oxy, and α-Oxo Amides by a Post-Passerini Condensation Transformation. Synthesis, 2020, 52, 3243-3252.	1.2	3
65	Highly regio- and diastereoselective synthesis of oxo-1,2,3,4-tetrahydropyrazino[1,2-a]indoles, based on a post-Ugi condensation: joint experimental and computational study. Journal of the Iranian Chemical Society, 2019, 16, 1517-1526.	1.2	2
66	Synthesis of Novel Dihydrothieno- and Thiopyrano Quinolines from 3-Formyl-2-Mercaptoquinoline Derivatives. Polycyclic Aromatic Compounds, 2020, 40, 1406-1416.	1.4	2
67	Palladium Catalyzed Domino Sonogashira Coupling of 2-Chloro-3-(Chloromethyl)Quinolines with Terminal Acetylenes Followed by Dimerization. Polycyclic Aromatic Compounds, 2019, , 1-7.	1.4	1
68	Synthesis of [1,4]Oxathiepino[5,6-b]quinolines via Base-Mediated Intramolecular Hydroalkoxylation. SynOpen, 2022, 06, 7-10.	0.8	1
69	An Efficient Procedure for the Preparation of Mono, and Di-Bis-indolyl Methanes Catalyzed by Molybdatophosphoric Acid ChemInform, 2005, 36, no.	0.1	0
70	Nitration of Aromatic Compounds by Zn(NO3)2×2N2O4 and Its Charcoal-Supported System ChemInform, 2005, 36, no.	0.1	0
71	Molybdatophosphoric Acid as a Catalyst for the Methoxymethylation of Alcohols under Solvent-Free Conditions ChemInform, 2005, 36, no.	0.1	0
72	Editorial:Synthesis of Heterocycles via Cascade Reactions. Current Organic Chemistry, 2017, 21, .	0.9	0