Rosane M B Teles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8573650/publications.pdf

Version: 2024-02-01

39 2,631 papers citations

23 36
h-index g-index

41 41 all docs docs citations

41 times ranked 3915 citing authors

#	Article	IF	CITATIONS
1	Editorial: Strategies Played by Immune Cells and Mycobacteria in the Battle Between Antimicrobial Activity and Bacterial Survival. Frontiers in Immunology, 2022, 13, 869692.	4.8	O
2	Extracellular traps released by antimicrobial TH17 cells contribute to host defense. Journal of Clinical Investigation, $2021,131,.$	8.2	30
3	The cellular architecture of the antimicrobial response network in human leprosy granulomas. Nature Immunology, 2021, 22, 839-850.	14.5	60
4	Identification of Genes Encoding Antimicrobial Proteins in Langerhans Cells. Frontiers in Immunology, 2021, 12, 695373.	4.8	0
5	Cellular, Molecular, and Immunological Characteristics of Langhans Multinucleated Giant Cells Programmed by IL-15. Journal of Investigative Dermatology, 2020, 140, 1824-1836.e7.	0.7	8
6	The cell fate regulator NUPR1 is induced by Mycobacterium leprae via type I interferon in human leprosy. PLoS Neglected Tropical Diseases, 2019, 13, e0007589.	3.0	7
7	Identification of a systemic interferon- \hat{l}^3 inducible antimicrobial gene signature in leprosy patients undergoing reversal reaction. PLoS Neglected Tropical Diseases, 2019, 13, e0007764.	3.0	21
8	Dual RNA-Seq of Human Leprosy Lesions Identifies Bacterial Determinants Linked to Host Immune Response. Cell Reports, 2019, 26, 3574-3585.e3.	6.4	38
9	Sequential conditioning-stimulation reveals distinct gene- and stimulus-specific effects of Type I and II IFN on human macrophage functions. Scientific Reports, 2019, 9, 5288.	3.3	26
10	Whole blood RNA signatures in leprosy patients identify reversal reactions before clinical onset: a prospective, multicenter study. Scientific Reports, 2019, 9, 17931.	3.3	21
11	Plasticity of antimicrobial and phagocytic programs in human macrophages. Immunology, 2019, 156, 164-173.	4.4	20
12	Autophagy links antimicrobial activity with antigen presentation in Langerhans cells. JCI Insight, 2019, 4, .	5.0	17
13	IL-26 contributes to host defense against intracellular bacteria. Journal of Clinical Investigation, 2019, 129, 1926-1939.	8.2	42
14	Intrinsic activation of the vitamin D antimicrobial pathway by M. leprae infection is inhibited by type I IFN. PLoS Neglected Tropical Diseases, 2018, 12, e0006815.	3.0	12
15	Vitamin D status contributes to the antimicrobial activity of macrophages against Mycobacterium leprae. PLoS Neglected Tropical Diseases, 2018, 12, e0006608.	3.0	44
16	PLAU and SerpinB2 role in apoptosis in leprosy. Journal of the American Academy of Dermatology, 2017, 76, AB199.	1.2	0
17	Cell-type deconvolution with immune pathways identifies gene networks of host defense and immunopathology in leprosy. JCI Insight, 2016, 1, e88843.	5.0	29
18	S100A12 Is Part of the Antimicrobial Network against Mycobacterium leprae in Human Macrophages. PLoS Pathogens, 2016, 12, e1005705.	4.7	77

#	Article	IF	CITATIONS
19	Jagged1 Instructs Macrophage Differentiation in Leprosy. PLoS Pathogens, 2016, 12, e1005808.	4.7	32
20	IL-27 Suppresses Antimicrobial Activity in Human Leprosy. Journal of Investigative Dermatology, 2015, 135, 2410-2417.	0.7	25
21	Comparison of Molecular Signatures from Multiple Skin Diseases Identifies Mechanisms of Immunopathogenesis. Journal of Investigative Dermatology, 2015, 135, 151-159.	0.7	35
22	IL-32 is a molecular marker of a host defense network in human tuberculosis. Science Translational Medicine, 2014, 6, 250ra114.	12.4	110
23	Type I Interferon Suppresses Type II Interferon–Triggered Human Anti-Mycobacterial Responses. Science, 2013, 339, 1448-1453.	12.6	359
24	Galectin-3 Regulates the Innate Immune Response of Human Monocytes. Journal of Infectious Diseases, 2013, 207, 947-956.	4.0	41
25	MicroRNA-21 targets the vitamin D–dependent antimicrobial pathway in leprosy. Nature Medicine, 2012, 18, 267-273.	30.7	190
26	NOD2 triggers an interleukin-32–dependent human dendritic cell program in leprosy. Nature Medicine, 2012, 18, 555-563.	30.7	118
27	The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nature Immunology, 2012, 13, 1155-1161.	14.5	363
28	Vitamin D Is Required for IFN-γ–Mediated Antimicrobial Activity of Human Macrophages. Science Translational Medicine, 2011, 3, 104ra102.	12.4	442
29	Schwann Cells Producing Matrix Metalloproteinases Under <i>Mycobacterium leprae</i> Stimulation May Play a Role in the Outcome of Leprous Neuropathy. Journal of Neuropathology and Experimental Neurology, 2010, 69, 27-39.	1.7	28
30	A role for interleukinâ \in 5 in promoting increased immunoglobulin M at the site of disease in leprosy. Immunology, 2010, 131, 405-414.	4.4	14
31	High Matrix Metalloproteinase Production Correlates with Immune Activation and Leukocyte Migration in Leprosy Reactional Lesions. Infection and Immunity, 2010, 78, 1012-1021.	2.2	27
32	Interleukin-4 Regulates the Expression of CD209 and Subsequent Uptake of <i>Mycobacterium leprae</i> by Schwann Cells in Human Leprosy. Infection and Immunity, 2010, 78, 4634-4643.	2.2	25
33	Divergence of Macrophage Phagocytic and Antimicrobial Programs in Leprosy. Cell Host and Microbe, 2009, 6, 343-353.	11.0	175
34	Long?term culture of multibacillary leprosy macrophages isolated from skin lesions: a new model to study Mycobacterium leprae?human cell interaction. British Journal of Dermatology, 2007, 157, 273-283.	1.5	22
35	Expression of metalloproteinases (MMPâ€2, MMPâ€9, and TACE) and TNFâ€Î± in the nerves of leprosy patients. Journal of the Peripheral Nervous System, 2007, 12, 195-204.	3.1	40
36	Ninjurin 1 asp110ala single nucleotide polymorphism is associated with protection in leprosy nerve damage. Journal of Neuroimmunology, 2007, 190, 131-138.	2.3	28

ROSANE M B TELES

#	Article	IF	CITATIONS
37	Cytokines and Mycobacterium leprae Induce Apoptosis in Human Schwann Cells. Journal of Neuropathology and Experimental Neurology, 2005, 64, 882-890.	1.7	35
38	Differential TNF1 \pm mRNA regulation detected in the epidermis of leprosy patients. Archives of Dermatological Research, 2002, 294, 355-362.	1.9	25
39	Anti-Inflammatory Drugs Block Cytokine mRNA Accumulation in the Skin and Improve the Clinical Condition of Reactional Leprosy Patients. Journal of Investigative Dermatology, 2000, 115, 935-941.	0.7	40