Lydia H Zeglin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8573047/publications.pdf

Version: 2024-02-01

39	4,413	27 h-index	37
papers	citations		g-index
39	39	39	6262 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 2008, 11, 1252-1264.	6.4	1,684
2	Pulse dynamics and microbial processes in aridland ecosystems. Journal of Ecology, 2008, 96, 413-420.	4.0	330
3	Stream microbial diversity in response to environmental changes: review and synthesis of existing research. Frontiers in Microbiology, 2015, 6, 454.	3.5	297
4	The avian gut microbiota: community, physiology and function in wild birds. Journal of Avian Biology, 2018, 49, e01788.	1.2	194
5	N retention and transformation in urban streams. Journal of the North American Benthological Society, 2005, 24, 626-642.	3.1	159
6	Microbial responses to nitrogen addition in three contrasting grassland ecosystems. Oecologia, 2007, 154, 349-359.	2.0	158
7	Evidence for Different Contributions of Archaea and Bacteria to the Ammonia-Oxidizing Potential of Diverse Oregon Soils. Applied and Environmental Microbiology, 2010, 76, 7691-7698.	3.1	150
8	Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials. ISME Journal, 2012, 6, 2024-2032.	9.8	149
9	Bacterial Community Structure Along Moisture Gradients in the Parafluvial Sediments of Two Ephemeral Desert Streams. Microbial Ecology, 2011, 61, 543-556.	2.8	107
10	Nano-scale investigation of the association of microbial nitrogen residues with iron (hydr)oxides in a forest soil O-horizon. Geochimica Et Cosmochimica Acta, 2012, 95, 213-226.	3.9	107
11	The Potential of Metagenomic Approaches for Understanding Soil Microbial Processes. Soil Science Society of America Journal, 2014, 78, 3-10.	2.2	105
12	Thinking outside the channel: modeling nitrogen cycling in networked river ecosystems. Frontiers in Ecology and the Environment, 2011, 9, 229-238.	4.0	104
13	Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. Global Change Biology, 2017, 23, 3064-3075.	9.5	103
14	Factors Controlling Soil Microbial Biomass and Bacterial Diversity and Community Composition in a Cold Desert Ecosystem: Role of Geographic Scale. PLoS ONE, 2013, 8, e66103.	2.5	98
15	Landscape Distribution of Microbial Activity in the McMurdo Dry Valleys: Linked Biotic Processes, Hydrology, and Geochemistry in a Cold Desert Ecosystem. Ecosystems, 2009, 12, 562-573.	3.4	68
16	Manipulation of gut microbiota during critical developmental windows affects host physiological performance and disease susceptibility across ontogeny. Journal of Animal Ecology, 2019, 88, 845-856.	2.8	61
17	Vertical changes of soil microbial properties in claypan soils. Soil Biology and Biochemistry, 2018, 121, 154-164.	8.8	57
18	Organic matter quantity and source affects microbial community structure and function following volcanic eruption on <scp>K</scp> asatochi <scp>I</scp> sland, <scp>A</scp> laska. Environmental Microbiology, 2016, 18, 146-158.	3.8	46

#	Article	IF	CITATIONS
19	Microbial assemblages reflect environmental heterogeneity in alpine streams. Global Change Biology, 2019, 25, 2576-2590.	9.5	42
20	Bacterial and archaeal amoA gene distribution covaries with soil nitrification properties across a range of land uses. Environmental Microbiology Reports, 2011, 3, 717-726.	2.4	39
21	Hydrologic characteristics of lake―and streamâ€side riparian wetted margins in the McMurdo Dry Valleys, Antarctica. Hydrological Processes, 2009, 23, 1255-1267.	2.6	37
22	Solute Concentrations Influence Microbial Methanogenesis in Coal-bearing Strata of the Cherokee Basin, USA. Frontiers in Microbiology, 2015, 6, 1287.	3.5	36
23	Advancing the Food-Energy–Water Nexus: Closing Nutrient Loops in Arid River Corridors. Environmental Science & Technology, 2016, 50, 8485-8496.	10.0	36
24	Experimental nitrogen and phosphorus enrichment stimulates multiple trophic levels of algal and detritalâ€based food webs: a global metaâ€analysis from streams and rivers. Biological Reviews, 2021, 96, 692-715.	10.4	35
25	Manipulation of Gut Microbiota Reveals Shifting Community Structure Shaped by Host Developmental Windows in Amphibian Larvae. Integrative and Comparative Biology, 2017, 57, 786-794.	2.0	34
26	Historical Drought Affects Microbial Population Dynamics and Activity During Soil Drying and Re-Wet. Microbial Ecology, 2020, 79, 662-674.	2.8	33
27	Long-term fire management history affects N-fertilization sensitivity, but not seasonality, of grassland soil microbial communities. Soil Biology and Biochemistry, 2018, 121, 231-239.	8.8	29
28	Soil fungal community changes in response to long-term fire cessation and N fertilization in tallgrass prairie. Fungal Ecology, 2019, 41, 45-55.	1.6	25
29	Fate of Decomposed Fungal Cell Wall Material in Organic Horizons of Old-Growth Douglas-fir Forest Soils. Soil Science Society of America Journal, 2013, 77, 489-500.	2.2	23
30	Controls on the Spatial Dimensions of Wetted Hydrologic Margins of Two Antarctic Lakes. Vadose Zone Journal, 2007, 6, 841-848.	2.2	21
31	Temporal Variation of Soil Microbial Properties in a Corn–Wheat–Soybean System. Soil Science Society of America Journal, 2019, 83, 1696-1711.	2.2	11
32	Connections and Feedback: Aquatic, Plant, and Soil Microbiomes in Heterogeneous and Changing Environments. BioScience, 2020, 70, 548-562.	4.9	11
33	Plant legacies and soil microbial community dynamics control soil respiration. Soil Biology and Biochemistry, 2021, 160, 108350.	8.8	10
34	Watershed and fire severity are stronger determinants of soil chemistry and microbiomes than within-watershed woody encroachment in a tallgrass prairie system. FEMS Microbiology Ecology, 2021, 97, .	2.7	5
35	Microbial Dispersal, Including Bison Dung Vectored Dispersal, Increases Soil Microbial Diversity in a Grassland Ecosystem. Frontiers in Microbiology, 2022, 13, 825193.	3.5	4
36	Differential Resilience of Soil Microbes and Ecosystem Functions Following Cessation of Long-Term Fertilization. Ecosystems, 2021, 24, 2042-2060.	3.4	3

Lydia H Zeglin

#	Article	IF	CITATIONS
37	Limited legacy effects of extreme multiyear drought on carbon and nitrogen cycling in a mesic grassland. Elementa, 2022, 10, .	3.2	2
38	Taxonomy, not locality, influences the cloacal microbiota of two nearctic colubrids: a preliminary analysis. Molecular Biology Reports, 2021, 48, 6435-6442.	2.3	0
39	High Supply, High Demand: A Fertilizer Waste Release Impacts Nitrate Uptake and Metabolism in a Large River. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006469.		0