Sujan Shresta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8572937/publications.pdf

Version: 2024-02-01

71061 62565 6,781 79 41 80 citations h-index g-index papers 82 82 82 7090 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Zika virus mutation enhances transmission potential and confers escape from protective dengue virus immunity. Cell Reports, 2022, 39, 110655.	2.9	20
2	Acute-phase Serum Cytokine Levels and Correlation with Clinical Outcomes in Children and Adults with Primary and Secondary Dengue Virus Infection in Myanmar between 2017 and 2019. Pathogens, 2022, 11, 558.	1.2	2
3	Whole Genome Sequencing of Dengue Virus Serotype 2 from Two Clinical Isolates and Serological Profile of Dengue in the 2015–2016 Nepal Outbreak. American Journal of Tropical Medicine and Hygiene, 2021, 104, 115-120.	0.6	4
4	Repeated exposure to dengue virus elicits robust cross neutralizing antibodies against Zika virus in residents of Northeastern Thailand. Scientific Reports, 2021, 11, 9634.	1.6	5
5	Emergence of a Novel Dengue Virus 3 (DENV-3) Genotype-I Coincident with Increased DENV-3 Cases in Yangon, Myanmar between 2017 and 2019. Viruses, 2021, 13, 1152.	1.5	7
6	Animal models for SARS-Cov2/Covid19 research-A commentary. Biochemical Pharmacology, 2021, 188, 114543.	2.0	14
7	The Ability of Zika virus Intravenous Immunoglobulin to Protect From or Enhance Zika Virus Disease. Frontiers in Immunology, 2021, 12, 717425.	2.2	6
8	Human FcRn expression and Type I Interferon signaling control Echovirus 11 pathogenesis in mice. PLoS Pathogens, 2021, 17, e1009252.	2.1	12
9	Zika virus oncolytic activity requires CD8+ T cells and is boosted by immune checkpoint blockade. JCI Insight, 2021, 6, .	2.3	46
10	SARS-CoV-2 monoclonal antibodies with therapeutic potential: Broad neutralizing activity and No evidence of antibody-dependent enhancement. Antiviral Research, 2021, 195, 105185.	1.9	5
11	Japanese encephalitis virus–primed CD8+ T cells prevent antibody-dependent enhancement of Zika virus pathogenesis. Journal of Experimental Medicine, 2020, 217, .	4.2	10
12	Protection against dengue virus requires a sustained balance of antibody and T cell responses. Current Opinion in Virology, 2020, 43, 22-27.	2.6	3
13	CD8 ⁺ T cells mediate protection against Zika virus induced by an NS3-based vaccine. Science Advances, 2020, 6, .	4.7	20
14	Targeting Endoplasmic Reticulum \hat{I} ±-Glucosidase I with a Single-Dose Iminosugar Treatment Protects against Lethal Influenza and Dengue Virus Infections. Journal of Medicinal Chemistry, 2020, 63, 4205-4214.	2.9	37
15	CD4+ T Cells Cross-Reactive with Dengue and Zika Viruses Protect against Zika Virus Infection. Cell Reports, 2020, 31, 107566.	2.9	31
16	Investigation of the immunogenicity of Zika glycan loop. Virology Journal, 2020, 17, 43.	1.4	9
17	Spiking Pandemic Potential: Structural and Immunological Aspects of SARS-CoV-2. Trends in Microbiology, 2020, 28, 605-618.	3.5	28
18	IMMU-43. ZIKA VIRUS TO TREAT GLIOMA: TURNING COLD TUMORS HOT. Neuro-Oncology, 2020, 22, ii114-ii114.	0.6	0

#	Article	lF	CITATIONS
19	Human Polyclonal Antibodies Prevent Lethal Zika Virus Infection in Mice. Scientific Reports, 2019, 9, 9857.	1.6	12
20	Cross-Reactive T Cell Immunity to Dengue and Zika Viruses: New Insights Into Vaccine Development. Frontiers in Immunology, 2019, 10, 1316.	2.2	51
21	Zika Virus Protease Cleavage of Host Protein Septin-2 Mediates Mitotic Defects in Neural Progenitors. Neuron, 2019, 101, 1089-1098.e4.	3.8	55
22	CD4+ T cells promote humoral immunity and viral control during Zika virus infection. PLoS Pathogens, 2019, 15, e1007474.	2.1	51
23	Antigenic cross-reactivity between Zika and dengue viruses: is it time to develop a universal vaccine?. Current Opinion in Immunology, 2019, 59, 1-8.	2.4	37
24	Detection of Zika virus in mouse mammary gland and breast milk. PLoS Neglected Tropical Diseases, 2019, 13, e0007080.	1.3	18
25	Genome-wide approaches to unravelling host–virus interactions in Dengue and Zika infections. Current Opinion in Virology, 2019, 34, 29-38.	2.6	6
26	Immune Response to Dengue and Zika. Annual Review of Immunology, 2018, 36, 279-308.	9.5	180
27	Maternally Acquired Zika Antibodies Enhance Dengue Disease Severity in Mice. Cell Host and Microbe, 2018, 24, 743-750.e5.	5.1	69
28	A longitudinal systems immunologic investigation of acute Zika virus infection in an individual infected while traveling to Caracas, Venezuela. PLoS Neglected Tropical Diseases, 2018, 12, e0007053.	1.3	6
29	Deconvolution of pro- and antiviral genomic responses in Zika virus-infected and bystander macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9172-E9181.	3.3	44
30	Synergism between the tyrosine kinase inhibitor sunitinib and Anti-TNF antibody protects against lethal dengue infection. Antiviral Research, 2018, 158, 1-7.	1.9	15
31	Cross-reactive Dengue virus-specific CD8+ T cells protect against Zika virus during pregnancy. Nature Communications, 2018, 9, 3042.	5.8	93
32	Development of Zika Virus Vaccines. Vaccines, 2018, 6, 7.	2.1	24
33	Mapping and Role of the CD8 + T Cell Response During Primary Zika Virus Infection in Mice. Cell Host and Microbe, 2017, 21, 35-46.	5.1	211
34	Modified mRNA Vaccines Protect against Zika Virus Infection. Cell, 2017, 168, 1114-1125.e10.	13.5	633
35	ADE-ing and Abetting Zika. Cell Host and Microbe, 2017, 21, 557-558.	5.1	4
36	Identification of Zika virus epitopes reveals immunodominant and protective roles for dengue virus cross-reactive CD8+ T cells. Nature Microbiology, 2017, 2, 17036.	5.9	167

#	Article	IF	CITATIONS
37	Dengue virus-reactive CD8+ T cells mediate cross-protection against subsequent Zika virus challenge. Nature Communications, 2017 , 8 , 1459 .	5.8	129
38	T Cell Immunity to Zika and Dengue Viral Infections. Journal of Interferon and Cytokine Research, 2017, 37, 475-479.	0.5	20
39	An IRF-3-, IRF-5-, and IRF-7-Independent Pathway of Dengue Viral Resistance Utilizes IRF-1 to Stimulate Type I and II Interferon Responses. Cell Reports, 2017, 21, 1600-1612.	2.9	53
40	Neuroteratogenic Viruses and Lessons for Zika Virus Models. Trends in Microbiology, 2016, 24, 622-636.	3.5	28
41	A Mouse Model of Zika Virus Sexual Transmission and Vaginal Viral Replication. Cell Reports, 2016, 17, 3091-3098.	2.9	137
42	The Neurobiology of Zika Virus. Neuron, 2016, 92, 949-958.	3.8	101
43	Protective Role of Cross-Reactive CD8 T Cells Against Dengue Virus Infection. EBioMedicine, 2016, 13, 284-293.	2.7	85
44	Zika Virus Infects Neural Progenitors in the Adult Mouse Brain and Alters Proliferation. Cell Stem Cell, 2016, 19, 593-598.	5.2	242
45	Novel strategies for discovering inhibitors of Dengue and Zika fever. Expert Opinion on Drug Discovery, 2016, 11, 921-923.	2.5	7
46	Inhibition of endoplasmic reticulum glucosidases is required for inÂvitro and inÂvivo dengue antiviral activity by the iminosugar UV-4. Antiviral Research, 2016, 129, 93-98.	1.9	52
47	Protection against dengue disease by synthetic nucleic acid antibody prophylaxis/immunotherapy. Scientific Reports, 2015, 5, 12616.	1.6	65
48	Influence of antibodies and T cells on dengue disease outcome: insights from interferon receptor-deficient mouse models. Current Opinion in Virology, 2015, 13, 61-66.	2.6	16
49	A Novel Iminosugar UV-12 with Activity against the Diverse Viruses Influenza and Dengue (Novel) Tj ETQq $1\ 1\ 0.7$	784314 rgl 1.5	BT /Overlock 21
50	CD8 ⁺ T Cells Can Mediate Short-Term Protection against Heterotypic Dengue Virus Reinfection in Mice. Journal of Virology, 2015, 89, 6494-6505.	1.5	78
51	Dengue Virus Evolution under a Host-Targeted Antiviral. Journal of Virology, 2015, 89, 5592-5601.	1.5	49
52	Defining New Therapeutics Using a More Immunocompetent Mouse Model of Antibody-Enhanced Dengue Virus Infection. MBio, 2015, 6, e01316-15.	1.8	40
53	Mouse Models to Study Dengue Virus Immunology and Pathogenesis. Frontiers in Immunology, 2014, 5, 151.	2.2	94
54	Mouse models for dengue vaccines and antivirals. Journal of Immunological Methods, 2014, 410, 34-38.	0.6	19

#	Article	IF	Citations
55	Animal Models in Dengue. Methods in Molecular Biology, 2014, 1138, 377-390.	0.4	3
56	Dengue Virus Vaccine Development. Advances in Virus Research, 2014, 88, 315-372.	0.9	60
57	Immunodominance Changes as a Function of the Infecting Dengue Virus Serotype and Primary versus Secondary Infection. Journal of Virology, 2014, 88, 11383-11394.	1.5	100
58	CD8+ T Cells Prevent Antigen-Induced Antibody-Dependent Enhancement of Dengue Disease in Mice. Journal of Immunology, 2014, 193, 4117-4124.	0.4	92
59	An iminosugar with potent inhibition of dengue virus infection in vivo. Antiviral Research, 2013, 98, 35-43.	1.9	83
60	Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2046-53.	3.3	524
61	The Roles of IRF-3 and IRF-7 in Innate Antiviral Immunity against Dengue Virus. Journal of Immunology, 2013, 191, 4194-4201.	0.4	77
62	Role of Humoral versus Cellular Responses Induced by a Protective Dengue Vaccine Candidate. PLoS Pathogens, 2013, 9, e1003723.	2.1	94
63	Tracking the Evolution of Dengue Virus Strains D2S10 and D2S20 by 454 Pyrosequencing. PLoS ONE, 2013, 8, e54220.	1.1	18
64	Role of Complement in Dengue Virus Infection: Protection or Pathogenesis?. MBio, 2012, 3, .	1.8	23
65	Trafficking and Replication Patterns Reveal Splenic Macrophages as Major Targets of Dengue Virus in Mice. Journal of Virology, 2012, 86, 12138-12147.	1.5	54
66	Gamma Interferon (IFN- \hat{I}^3) Receptor Restricts Systemic Dengue Virus Replication and Prevents Paralysis in IFN- \hat{I}^2 Receptor-Deficient Mice. Journal of Virology, 2012, 86, 12561-12570.	1.5	101
67	Insights into HLA-Restricted T Cell Responses in a Novel Mouse Model of Dengue Virus Infection Point toward New Implications for Vaccine Design. Journal of Immunology, 2011, 187, 4268-4279.	0.4	104
68	STAT2 Mediates Innate Immunity to Dengue Virus in the Absence of STAT1 via the Type I Interferon Receptor. PLoS Pathogens, 2011, 7, e1001297.	2.1	124
69	Important Advances in the Field of Anti-Dengue Virus Research. Antiviral Chemistry and Chemotherapy, 2011, 21, 105-116.	0.3	26
70	CD4+ T Cells Are Not Required for the Induction of Dengue Virus-Specific CD8+ T Cell or Antibody Responses but Contribute to Protection after Vaccination. Journal of Immunology, 2010, 185, 5405-5416.	0.4	179
71	Enhanced Infection of Liver Sinusoidal Endothelial Cells in a Mouse Model of Antibody-Induced Severe Dengue Disease. Cell Host and Microbe, 2010, 7, 128-139.	5.1	311
72	A Protective Role for Dengue Virus-Specific CD8+ T Cells. Journal of Immunology, 2009, 182, 4865-4873.	0.4	305

SUJAN SHRESTA

#	Article	IF	CITATIONS
73	Cardif-Mediated Signaling Controls the Initial Innate Response to Dengue Virus In Vivo. Journal of Virology, 2009, 83, 8276-8281.	1.5	63
74	Mouse models of dengue virus infection and disease. Antiviral Research, 2008, 80, 87-93.	1.9	137
75	A Mouse-Passaged Dengue Virus Strain with Reduced Affinity for Heparan Sulfate Causes Severe Disease in Mice by Establishing Increased Systemic Viral Loads. Journal of Virology, 2008, 82, 8411-8421.	1.5	105
76	Murine Model for Dengue Virus-Induced Lethal Disease with IncreasedVascular Permeability. Journal of Virology, 2006, 80, 10208-10217.	1.5	316
77	Critical Roles for Both STAT1-Dependent and STAT1-Independent Pathways in the Control of Primary Dengue Virus Infection in Mice. Journal of Immunology, 2005, 175, 3946-3954.	0.4	118
78	Early activation of natural killer and B cells in response to primary dengue virus infection in A/J mice. Virology, 2004, 319, 262-273.	1.1	99
79	Interferon-Dependent Immunity Is Essential for Resistance to Primary Dengue Virus Infection in Mice, Whereas T- and B-Cell-Dependent Immunity Are Less Critical. Journal of Virology, 2004, 78, 2701-2710.	1.5	287