List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8572844/publications.pdf Version: 2024-02-01

		126708	168136
112	3,612	33	53
papers	citations	h-index	g-index
112	112	112	2393
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models. Cement and Concrete Research, 2021, 145, 106449.	4.6	235
2	A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area. Science of the Total Environment, 2020, 701, 134413.	3.9	216
3	Support vector machine applied to settlement of shallow foundations on cohesionless soils. Computers and Geotechnics, 2008, 35, 419-427.	2.3	178
4	Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models. Stochastic Environmental Research and Risk Assessment, 2016, 30, 1769-1784.	1.9	109
5	A Novel Hybrid Swarm Optimized Multilayer Neural Network for Spatial Prediction of Flash Floods in Tropical Areas Using Sentinel-1 SAR Imagery and Geospatial Data. Sensors, 2018, 18, 3704.	2.1	101
6	Application of Artificial Intelligence to Maximum Dry Density and Unconfined Compressive Strength of Cement Stabilized Soil. Geotechnical and Geological Engineering, 2011, 29, 329-342.	0.8	99
7	Effectiveness assessment of Keras based deep learning with different robust optimization algorithms for shallow landslide susceptibility mapping at tropical area. Catena, 2020, 188, 104458.	2.2	96
8	Forecasting monthly precipitation using sequential modelling. Hydrological Sciences Journal, 2019, 64, 690-700.	1.2	89
9	Spatial pattern analysis and prediction of forest fire using new machine learning approach of Multivariate Adaptive Regression Splines and Differential Flower Pollination optimization: A case study at Lao Cai province (Viet Nam). Journal of Environmental Management, 2019, 237, 476-487.	3.8	87
10	A novel technique based on the improved firefly algorithm coupled with extreme learning machine (ELM-IFF) for predicting the thermal conductivity of soil. Engineering With Computers, 2022, 38, 3321-3340.	3.5	78
11	Multivariate Adaptive Regression Spline (Mars) for Prediction of Elastic Modulus of Jointed Rock Mass. Geotechnical and Geological Engineering, 2013, 31, 249-253.	0.8	70
12	Forecasting heating and cooling loads of buildings: a comparative performance analysis. Journal of Ambient Intelligence and Humanized Computing, 2020, 11, 1253-1264.	3.3	70
13	Application of support vector machine and relevance vector machine to determine evaporative losses in reservoirs. Hydrological Processes, 2012, 26, 1361-1369.	1.1	67
14	Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine. KSCE Journal of Civil Engineering, 2014, 18, 1753-1758.	0.9	64
15	Application of soft computing techniques for shallow foundation reliability in geotechnical engineering. Geoscience Frontiers, 2021, 12, 375-383.	4.3	64
16	Lake Water-Level fluctuations forecasting using Minimax Probability Machine Regression, Relevance Vector Machine, Gaussian Process Regression, and Extreme Learning Machine. Water Resources Management, 2019, 33, 3965-3984.	1.9	63
17	Efficient computational techniques for predicting the California bearing ratio of soil in soaked conditions. Engineering Geology, 2021, 291, 106239.	2.9	62
18	Particle Swarm Optimization Algorithm-Extreme Learning Machine (PSO-ELM) Model for Predicting Resilient Modulus of Stabilized Aggregate Bases. Applied Sciences (Switzerland), 2019, 9, 3221.	1.3	60

#	Article	IF	CITATIONS
19	Modelling the energy performance of residential buildings using advanced computational frameworks based on RVM, GMDH, ANFIS-BBO and ANFIS-IPSO. Journal of Building Engineering, 2021, 35, 102105.	1.6	59
20	ELM-based adaptive neuro swarm intelligence techniques for predicting the California bearing ratio of soils in soaked conditions. Applied Soft Computing Journal, 2021, 110, 107595.	4.1	59
21	A novel approach for forecasting of ground vibrations resulting from blasting: modified particle swarm optimization coupled extreme learning machine. Engineering With Computers, 2021, 37, 3221-3235.	3.5	58
22	Prediction of Field Hydraulic Conductivity of Clay Liners Using an Artificial Neural Network and Support Vector Machine. International Journal of Geomechanics, 2012, 12, 606-611.	1.3	54
23	A Novel GIS-Based Random Forest Machine Algorithm for the Spatial Prediction of Shallow Landslide Susceptibility. Forests, 2020, 11, 118.	0.9	54
24	Hourly River Flow Forecasting: Application of Emotional Neural Network Versus Multiple Machine Learning Paradigms. Water Resources Management, 2020, 34, 1075-1091.	1.9	53
25	Genetic-Algorithm-Optimized Sequential Model for Water Temperature Prediction. Sustainability, 2020, 12, 5374.	1.6	50
26	Uplift capacity of suction caisson in clay using multivariate adaptive regression spline. Ocean Engineering, 2011, 38, 2123-2127.	1.9	48
27	Determination of ultimate capacity of driven piles in cohesionless soil: A Multivariate Adaptive Regression Spline approach. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36, 1434-1439.	1.7	48
28	Genetic prediction of ICU hospitalization and mortality in COVIDâ€19 patients using artificial neural networks. Journal of Cellular and Molecular Medicine, 2022, 26, 1445-1455.	1.6	45
29	Forecasting Evaporative Loss by Least-Square Support-Vector Regression and Evaluation with Genetic Programming, Gaussian Process, and Minimax Probability Machine Regression: Case Study of Brisbane City. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	0.8	44
30	Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power. Renewable and Sustainable Energy Reviews, 2021, 148, 111315.	8.2	42
31	Predicting permeability of tight carbonates using a hybrid machine learning approach of modified equilibrium optimizer and extreme learning machine. Acta Geotechnica, 2022, 17, 1239-1255.	2.9	41
32	Least Square Support Vector Machine Applied to Slope Reliability Analysis. Geotechnical and Geological Engineering, 2013, 31, 1329-1334.	0.8	34
33	Reliability Analysis of Pile Foundation Using Soft Computing Techniques: A Comparative Study. Processes, 2021, 9, 486.	1.3	34
34	Reliability Analysis of Pile Foundation Using ELM and MARS. Geotechnical and Geological Engineering, 2019, 37, 3447-3457.	0.8	32
35	Application of soft computing methods in predicting uniaxial compressive strength of the volcanic rocks with different weathering degree. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	30
36	Assessment of rockburst risk using multivariate adaptive regression splines and deep forest model. Acta Geotechnica, 2022, 17, 1183-1205.	2.9	30

#	Article	IF	CITATIONS
37	Application of statistical learning algorithms to ultimate bearing capacity of shallow foundation on cohesionless soil. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36, 100-110.	1.7	29
38	Slope Stability Analysis Using Rf, Gbm, Cart, Bt and Xgboost. Geotechnical and Geological Engineering, 2021, 39, 3741-3752.	0.8	29
39	Least square support vector machine and relevance vector machine for evaluating seismic liquefaction potential using SPT. Natural Hazards, 2011, 59, 811-822.	1.6	28
40	Modeling of tensile strength of rocks materials based on support vector machines approaches. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37, 2655-2670.	1.7	28
41	Hybrid ensemble soft computing approach for predicting penetration rate of tunnel boring machine in a rock environment. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13, 1398-1412.	3.7	28
42	Application of Relevance Vector Machine for Prediction of Ultimate Capacity of Driven Piles in Cohesionless Soils. Geotechnical and Geological Engineering, 2012, 30, 1261-1270.	0.8	27
43	Least square support vector machine and multivariate adaptive regression spline for modeling lateral load capacity of piles. Neural Computing and Applications, 2013, 23, 1123-1127.	3.2	26
44	Novel integration of extreme learning machine and improved Harris hawks optimization with particle swarm optimization-based mutation for predicting soil consolidation parameter. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14, 1588-1608.	3.7	26
45	Support vector classifier analysis of slope. Geomatics, Natural Hazards and Risk, 2013, 4, 1-12.	2.0	25
46	Determination of compressive strength using relevance vector machine and emotional neural neural network. Asian Journal of Civil Engineering, 2019, 20, 1109-1118.	0.8	25
47	Machine learning techniques applied to prediction of residual strength of clay. Open Geosciences, 2011, 3, .	0.6	24
48	Predicting groundwater depth fluctuations using deep learning, extreme learning machine and Gaussian process: a comparative study. Earth Science Informatics, 2020, 13, 1237-1250.	1.6	24
49	A novel improved Harris Hawks optimization algorithm coupled with ELM for predicting permeability of tight carbonates. Engineering With Computers, 2022, 38, 4323-4346.	3.5	24
50	Spatial variability of rock depth using adaptive neuro-fuzzy inference system (ANFIS) and multivariate adaptive regression spline (MARS). Environmental Earth Sciences, 2015, 73, 4265-4272.	1.3	23
51	Reliability Analysis of Settlement of Pile Group in Clay Using LSSVM, GMDH, GPR. Geotechnical and Geological Engineering, 2020, 38, 6717-6730.	0.8	23
52	Reliability-Based Slope Stability Analysis of Durgawati Earthen Dam Considering Steady and Transient State Seepage Conditions Using MARS and RVM. Indian Geotechnical Journal, 2019, 49, 650-666.	0.7	21
53	Multivariate adaptive regression spline (MARS) and least squares support vector machine (LSSVM) for OCR prediction. Soft Computing, 2012, 16, 1347-1351.	2.1	20
54	Determination of liquefaction susceptibility of soil: a least square support vector machine approach. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37, 1154-1161.	1.7	20

#	Article	IF	CITATIONS
55	Newly explored machine learning model for river flow time series forecasting at Mary River, Australia. Environmental Monitoring and Assessment, 2020, 192, 761.	1.3	19
56	An Alternative Method for Determination of Liquefaction Susceptibility of Soil. Geotechnical and Geological Engineering, 2016, 34, 735-738.	0.8	18
57	Developing a New Computational Intelligence Approach for Approximating the Blast-Induced Ground Vibration. Applied Sciences (Switzerland), 2020, 10, 434.	1.3	18
58	Reliability and Prediction of Embedment Depth of Sheet pile Walls Using Hybrid ANN with Optimization Techniques. Arabian Journal for Science and Engineering, 2022, 47, 12853-12871.	1.7	18
59	Reliability analysis of settlement of pile group. Innovative Infrastructure Solutions, 2021, 6, 1.	1.1	17
60	Hybrid ELM and MARS-Based Prediction Model for Bearing Capacity of Shallow Foundation. Processes, 2022, 10, 1013.	1.3	17
61	Determination of effective stress parameter of unsaturated soils: A Gaussian process regression approach. Frontiers of Structural and Civil Engineering, 2013, 7, 133-136.	1.2	16
62	A Novel Methodology to Classify Soil Liquefaction Using Deep Learning. Geotechnical and Geological Engineering, 2021, 39, 1049-1058.	0.8	16
63	Utilization of Gaussian Process Regression for Determination of Soil Electrical Resistivity. Geotechnical and Geological Engineering, 2014, 32, 191-195.	0.8	15
64	Compressive strength prediction of fly ash concrete by using machine learning techniques. Innovative Infrastructure Solutions, 2021, 6, 1.	1.1	15
65	Pullout capacity of small ground anchor: a least square support vector machine approach. Journal of Zhejiang University: Science A, 2015, 16, 295-301.	1.3	14
66	Liquefaction prediction using support vector machine model based on cone penetration data. Frontiers of Structural and Civil Engineering, 2013, 7, 72-82.	1.2	13
67	Spatial Variability of Rock Depth Using Simple Kriging, Ordinary Kriging, RVM and MPMR. Geotechnical and Geological Engineering, 2015, 33, 69-78.	0.8	13
68	Determination of Friction Capacity of Driven Pile in Clay Using Gaussian Process Regression (GPR), and Minimax Probability Machine Regression (MPMR). Geotechnical and Geological Engineering, 2019, 37, 4643-4647.	0.8	13
69	Determination of Uplift Capacity of Suction Caisson Using Gaussian Process Regression, Minimax Probability Machine Regression and Extreme Learning Machine. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2019, 43, 651-657.	1.0	13
70	Estimating Slump Flow and Compressive Strength of Self-Compacting Concrete Using Emotional Neural Networks. Applied Sciences (Switzerland), 2020, 10, 8543.	1.3	13
71	Probabilistic Design of Retaining Wall Using Machine Learning Methods. Applied Sciences (Switzerland), 2021, 11, 5411.	1.3	13
72	SPT-based liquefaction potential assessment by relevance vector machine approach. European Journal of Environmental and Civil Engineering, 2013, 17, 248-262.	1.0	12

#	Article	IF	CITATIONS
73	Relevance vector machines approach for long-term flow prediction. Neural Computing and Applications, 2014, 25, 1393-1405.	3.2	12
74	Determination of stability of epimetamorphic rock slope using Minimax Probability Machine. Geomatics, Natural Hazards and Risk, 2016, 7, 186-193.	2.0	12
75	Deterministic and Probabilistic Analysis of Liquefaction for Different Regions in Bihar. Geotechnical and Geological Engineering, 2018, 36, 3311-3321.	0.8	12
76	A Comparative Analysis of Hybrid Computational Models Constructed with Swarm Intelligence Algorithms for Estimating Soil Compression Index. Archives of Computational Methods in Engineering, 2022, 29, 4735-4773.	6.0	12
77	Determination of Optimum Tool for Efficient Rock Cutting. Geotechnical and Geological Engineering, 2016, 34, 1257-1265.	0.8	11
78	Advanced soft computing techniques for predicting soil compression coefficient in engineering project: a comparative study. Engineering With Computers, 2020, 36, 1405-1416.	3.5	11
79	Statistical learning algorithms for identifying contrasting tillage practices with Landsat Thematic Mapper data. International Journal of Remote Sensing, 2012, 33, 5732-5745.	1.3	10
80	Determination of reservoir induced earthquake using support vector machine and gaussian process regression. Applied Geophysics, 2013, 10, 229-234.	0.1	10
81	Performance assessment of genetic programming (GP) and minimax probability machine regression (MPMR) for prediction of seismic ultrasonic attenuation. Earthquake Science, 2013, 26, 147-150.	0.4	10
82	Smart phase behavior modeling of asphaltene precipitation using advanced computational frameworks: ENN, GMDH, and MPMR. Petroleum Science and Technology, 0, , 1-22.	0.7	10
83	Prediction of rock strain using soft computing framework. Innovative Infrastructure Solutions, 2022, 7, 1.	1.1	10
84	Prediction of Rock Strain Using Hybrid Approach of Ann and Optimization Algorithms. Geotechnical and Geological Engineering, 2022, 40, 4617-4643.	0.8	10
85	Application of statistical learning algorithms for prediction of liquefaction susceptibility of soil based on shear wave velocity. Geomatics, Natural Hazards and Risk, 2014, 5, 7-25.	2.0	8
86	Determination of seismic liquefaction potential of soil based on strain energy concept. Environmental Earth Sciences, 2015, 74, 5581-5585.	1.3	8
87	A New Integrated Approach Based on the Iterative Super-Resolution Algorithm and Expectation Maximization for Face Hallucination. Applied Sciences (Switzerland), 2020, 10, 718.	1.3	8
88	Compressive strength prediction model of high-strength concrete with silica fume by destructive and non-destructive technique. Innovative Infrastructure Solutions, 2021, 6, 1.	1.1	8
89	Risk estimation of soil slope stability problems. Arabian Journal of Geosciences, 2022, 15, 1.	0.6	8
90	Prediction of groundwater table for Chennai Region using soft computing techniques. Arabian Journal of Geosciences, 2022, 15, 1.	0.6	8

#	Article	IF	CITATIONS
91	The Use of a Relevance Vector Machine in Predicting Liquefaction Potential. Indian Geotechnical Journal, 2014, 44, 458-467.	0.7	7
92	A unified classification model for modeling of seismic liquefaction potential of soil based on CPT. Journal of Advanced Research, 2015, 6, 587-592.	4.4	7
93	Reliability Analysis of Liquefaction for Some Regions of Bihar. International Journal of Geotechnical Earthquake Engineering, 2018, 9, 23-37.	0.3	7
94	Applicability of artificial intelligence to reservoir induced earthquakes. Acta Geophysica, 2014, 62, 608-619.	1.0	6
95	Analysis of epimetamorphic rock slopes using soft computing. Journal of Shanghai Jiaotong University (Science), 2014, 19, 274-278.	0.5	6
96	Reliability Analysis of Pile Foundation Using GMDH, GP and MARS. Lecture Notes in Civil Engineering, 2022, , 1151-1159.	0.3	6
97	Modelling of reservoir-induced earthquakes: a multivariate adaptive regression spline. Journal of Geophysics and Engineering, 2012, 9, 494-497.	0.7	5
98	Determination of Surface and Hole Quality in Drilling of AISI D2 Cold Work Tool Steel Using MPMR, MARS and LSSVM. Journal of Advanced Manufacturing Systems, 2014, 13, 237-246.	0.4	5
99	Modeling of SPT Seismic Liquefaction Data Using Minimax Probability Machine. Geotechnical and Geological Engineering, 2014, 32, 699-703.	0.8	5
100	A parametric study of ground vibration induced by quarry blasting: an application of group method of data handling. Environmental Earth Sciences, 2022, 81, 1.	1.3	5
101	Determination of Compression Index for Marine Clay: A Relevance Vector Machine Approach. Marine Georesources and Geotechnology, 2012, 30, 263-273.	1.2	4
102	Determination of stability of slope using Minimax Probability Machine. Georisk, 2014, 8, 147-151.	2.6	4
103	Relevance vector machine and multivariate adaptive regression spline for modelling ultimate capacity of pile foundation. Journal of Numerical Methods in Civil Engineering, 2016, 1, 37-45.	0.3	4
104	Three-Dimensional Site Characterization Model of Bangalore Using Support Vector Machine. ISRN Soil Science, 2012, 2012, 1-10.	0.8	3
105	Determination of the Angle of Shearing Resistance of Soils Using Multivariate Adaptive Regression Spline. Marine Georesources and Geotechnology, 2015, 33, 542-545.	1.2	3
106	Reliability Analysis of Quick Sand Condition. Geotechnical and Geological Engineering, 2016, 34, 579-584.	0.8	3
107	Numerical analysis of bearing capacity of circular footing reinforced with geogrid layers. Arabian Journal of Geosciences, 2022, 15, 1.	0.6	3
108	Minimax Probability Machine. Advances in Computational Intelligence and Robotics Book Series, 2015, , 182-210.	0.4	2

#	Article	IF	CITATIONS
109	Site Characterization Model Using Support Vector Machine and Ordinary Kriging. Journal of Intelligent Systems, 2011, 20, .	1.2	1
110	Soft Computing Applied to Rotation Capacity of Wide Flange Beams. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2018, 42, 305-314.	1.0	1
111	An approach based on socio-politically optimized neural computing network for predicting shallow landslide susceptibility at tropical areas. Environmental Earth Sciences, 2021, 80, 1.	1.3	1
112	Support Vector Machine and Relevance Vector Machine for Prediction of Alumina and Pore Volume Fraction in Bioceramics. International Journal of Applied Ceramic Technology, 2013, 10, E240.	1.1	0