Fenghua Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8572840/publications.pdf Version: 2024-02-01

FENCHUA LU

#	Article	IF	CITATIONS
1	Granulosa cells affect in vitro maturation and subsequent parthenogenetic development of buffalo (<i>Bubalus bubalis</i>) oocytes. Reproduction in Domestic Animals, 2022, 57, 141-148.	1.4	4
2	Hypoxia promotes steroidogenic competence of buffalo (Bubalus bubalis) theca cells. Theriogenology, 2022, 180, 113-120.	2.1	2
3	RNAi-mediated knockdown of Xist improves development of the female buffalo (Bubalus bubalis) nuclear transfer embryos. Theriogenology, 2022, 187, 27-33.	2.1	3
4	Theca cell onditioned medium enhances steroidogenesis competence of buffalo (Bubalus bubalis) granulosa cells. Reproduction in Domestic Animals, 2021, 56, 254-262.	1.4	3
5	Cell synchronization by Rapamycin improves the developmental competence of buffalos (Bubalus) Tj ETQq1 1 0.	784314 rg 1.4	gBŢ /Overloc
6	Histone Demethylase <i>KDM4D</i> Could Improve the Developmental Competence of Buffalo (<i>Bubalus Bubalis</i>) Somatic Cell Nuclear Transfer (SCNT) Embryos. Microscopy and Microanalysis, 2021, 27, 409-419.	0.4	7
7	Transforming Growth Factor-β1 Enhances Mesenchymal Characteristics of Buffalo (<i>Bubalus) Tj ETQq1 1 0.784</i>	4314 rgBT 0.9	/Qverlock 1
8	Anti-silencing factor 1A is associated with genome stability maintenance of mouse preimplantation embryosâ€. Biology of Reproduction, 2020, 102, 817-827.	2.7	2
9	A new threeâ€dimensional glass scaffold increases the in vitro maturation efficiency of buffalo (<i>Bubalus bubalis</i>) oocyte via remodelling the extracellular matrix and cell connection of cumulus cells. Reproduction in Domestic Animals, 2020, 55, 170-180.	1.4	10
10	Activation of Wnt/β-Catenin Signaling Pathway Enhances the Derivation of Buffalo (<i>Bubalus) Tj ETQqO 0 0 rgf</i>	BT /Qverlo 0.9	ck_10 Tf 50 3
11	Theca cellâ€conditioned medium added to in vitro maturation enhances embryo developmental competence of buffalo (<i>Bubalus bubalis</i>) oocytes after parthenogenic activation. Reproduction in Domestic Animals, 2020, 55, 1501-1510.	1.4	3
12	Granulosa cell-conditioned medium enhances steroidogenic competence of buffalo (Bubalus bubalis) theca cells. In Vitro Cellular and Developmental Biology - Animal, 2020, 56, 799-807.	1.5	5
13	Hypoxia Enhances Mesenchymal Characteristics Maintenance of Buffalo Bone Marrow-Derived Mesenchymal Stem Cells. Cellular Reprogramming, 2020, 22, 167-177.	0.9	6
14	Understanding divergent domestication traits from the whole-genome sequencing of swamp- and river-buffalo populations. National Science Review, 2020, 7, 686-701.	9.5	43
15	Effect of sex differences in donor foetal fibroblast on the early development and DNA methylation status of buffalo (<i>Bubalus bubalis</i>) nuclear transfer embryos. Reproduction in Domestic Animals, 2019, 54, 11-22.	1.4	7
16	CK1 inhibitor affects in vitro maturation and developmental competence of bovine oocytes. Reproduction in Domestic Animals, 2019, 54, 1104-1112.	1.4	6
17	Brain-derived neurotrophic factor (BDNF) is expressed in buffalo (Bubalus bubalis) ovarian follicles and promotes oocyte maturation and early embryonic development. Theriogenology, 2019, 130, 79-88.	2.1	29

18Optimization of parthenogenetic activation of rabbit oocytes and development of rabbit embryo by
somatic cell nuclear transfer. Reproduction in Domestic Animals, 2019, 54, 258-269.1.46

Fenghua Lu

#	Article	IF	CITATIONS
19	The effects of IAM38 blocking or CD4 blocking on the binding of exogenous DNA in rabbit sperm. Molecular Biology Reports, 2019, 46, 251-259.	2.3	0
20	Cytoplasmic volume of recipient oocytes affects the nucleus reprogramming and the developmental competence of HMC buffalo (<i>Bubalus bubalis</i>) embryos. Journal of Veterinary Medical Science, 2018, 80, 1291-1300.	0.9	5
21	Efficient Generation of Transgenic Buffalos (Bubalus bubalis) by Nuclear Transfer of Fetal Fibroblasts Expressing Enhanced Green Fluorescent Protein. Scientific Reports, 2018, 8, 6967.	3.3	20
22	The expression pattern of fibroblast growth factor 10 and its receptors during buffalo follicular development. International Journal of Clinical and Experimental Pathology, 2018, 11, 4934-4941.	0.5	1
23	Establishment and characterization of buffalo fetal fibroblasts induced with human telomerase reverse transcriptase. Theriogenology, 2016, 86, 1622-1629.	2.1	2
24	Effects of Scriptaid on the Histone Acetylation, DNA Methylation and Development of Buffalo Somatic Cell Nuclear Transfer Embryos. Cellular Reprogramming, 2015, 17, 404-414.	0.9	12
25	Effects of scriptaid on the histone acetylation of buffalo oocytes and their ability to support the development of somatic cell nuclear transfer embryos. Theriogenology, 2015, 83, 1219-1225.	2.1	8
26	Buffalos (Bubalus bubalis) Cloned by Nuclear Transfer of Somatic Cells1. Biology of Reproduction, 2007, 77, 285-291.	2.7	132