Senentxu Lanceros-mendez

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/857268/senentxu-lanceros-mendez-publications-by-citations.pdf$

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

20,816 67 112 725 h-index g-index citations papers 786 24,550 7.45 4.9 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
725	Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. <i>Progress in Polymer Science</i> , 2014 , 39, 683-706	29.6	1743
724	to IPhase Transformation and Microestructural Changes of PVDF Films Induced by Uniaxial Stretch. <i>Journal of Macromolecular Science - Physics</i> , 2009 , 48, 514-525	1.4	383
723	Electroactive poly(vinylidene fluoride)-based structures for advanced applications. <i>Nature Protocols</i> , 2018 , 13, 681-704	18.8	320
722	FTIR AND DSC STUDIES OF MECHANICALLY DEFORMED EPVDF FILMS. <i>Journal of Macromolecular Science - Physics</i> , 2001 , 40, 517-527	1.4	303
721	Influence of the Ephase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). <i>Smart Materials and Structures</i> , 2010 , 19, 065010	3.4	286
720	Advances in Magnetic Nanoparticles for Biomedical Applications. <i>Advanced Healthcare Materials</i> , 2018 , 7, 1700845	10.1	277
719	Piezoelectric polymers as biomaterials for tissue engineering applications. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 136, 46-55	6	274
718	Polymer-Based Magnetoelectric Materials. Advanced Functional Materials, 2013, 23, 3371-3385	15.6	244
717	Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications. <i>RSC Advances</i> , 2013 , 3, 11404	3.7	227
716	Nucleation of the Electroactive Phase and Enhancement of the Optical Transparency in Low Filler Content Poly(vinylidene)/Clay Nanocomposites. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 18076-1808.	2 ^{3.8}	216
715	Influence of Processing Conditions on Polymorphism and Nanofiber Morphology of Electroactive Poly(vinylidene fluoride) Electrospun Membranes. <i>Soft Materials</i> , 2010 , 8, 274-287	1.7	201
714	On the origin of the electroactive poly(vinylidene fluoride) Ephase nucleation by ferrite nanoparticles via surface electrostatic interactions. <i>CrystEngComm</i> , 2012 , 14, 2807	3.3	198
713	Polymer composites and blends for battery separators: State of the art, challenges and future trends. <i>Journal of Power Sources</i> , 2015 , 281, 378-398	8.9	185
712	Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO3 nanocomposites. <i>Journal of Materials Science</i> , 2012 , 47, 1378-1388	4.3	183
711	Role of Nanoparticle Surface Charge on the Nucleation of the Electroactive Poly(vinylidene fluoride) Nanocomposites for Sensor and Actuator Applications. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 15790-15794	3.8	176
710	Energy Harvesting From Piezoelectric Materials Fully Integrated in Footwear. <i>IEEE Transactions on Industrial Electronics</i> , 2010 , 57, 813-819	8.9	160
709	Processing and characterization of a novel nonporous poly(vinilidene fluoride) films in the Iphase. <i>Journal of Non-Crystalline Solids</i> , 2006 , 352, 2226-2229	3.9	150

(2011-2011)

708	Nucleation of electroactive Ephase poly(vinilidene fluoride) with CoFe2O4 and NiFe2O4 nanofillers: a new method for the preparation of multiferroic nanocomposites. <i>Applied Physics A: Materials Science and Processing</i> , 2011 , 103, 233-237	2.6	144
707	Effect of carbon nanotube type and functionalization on the electrical, thermal, mechanical and electromechanical properties of carbon nanotube/styreneButadieneEtyrene composites for large strain sensor applications. <i>Composites Part B: Engineering</i> , 2014 , 61, 136-146	10	135
706	Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications. <i>Polymers</i> , 2018 , 10,	4.5	133
705	Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes. <i>Energy Storage Materials</i> , 2019 , 22, 346-375	19.4	127
704	Poly(vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems. <i>Journal of Power Sources</i> , 2014 , 245, 779-786	8.9	123
703	Influence of nitrogen content on the structural, mechanical and electrical properties of TiN thin films. <i>Surface and Coatings Technology</i> , 2005 , 191, 317-323	4.4	118
702	State-of-the-Art and Future Challenges of UV Curable Polymer-Based Smart Materials for Printing Technologies. <i>Advanced Materials Technologies</i> , 2019 , 4, 1800618	6.8	117
701	The effect of fibre concentration on the to Ephase transformation, degree of crystallinity and electrical properties of vapour grown carbon nanofibre/poly(vinylidene fluoride) composites. <i>Carbon</i> , 2009 , 47, 2590-2599	10.4	112
700	Dielectric and magnetic properties of ferrite/poly(vinylidene fluoride) nanocomposites. <i>Materials Chemistry and Physics</i> , 2012 , 131, 698-705	4.4	110
699	Electromechanical performance of poly(vinylidene fluoride)/carbon nanotube composites for strain sensor applications. <i>Sensors and Actuators A: Physical</i> , 2012 , 178, 10-16	3.9	110
698	Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites. <i>Sensors and Actuators A: Physical</i> , 2013 , 196, 55-62	3.9	110
697	Optimizing piezoelectric and magnetoelectric responses on CoFe2O4/P(VDF-TrFE) nanocomposites. <i>Journal Physics D: Applied Physics</i> , 2011 , 44, 495303	3	110
696	Influence of ferrite nanoparticle type and content on the crystallization kinetics and electroactive phase nucleation of poly(vinylidene fluoride). <i>Langmuir</i> , 2011 , 27, 7241-9	4	109
695	Dynamic piezoelectric stimulation enhances osteogenic differentiation of human adipose stem cells. <i>Journal of Biomedical Materials Research - Part A</i> , 2015 , 103, 2172-5	5.4	107
694	Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering. <i>RSC Advances</i> , 2013 , 3, 17938	3.7	103
693	Characterization of poled and non-poled EPVDF films using thermal analysis techniques. <i>Thermochimica Acta</i> , 2004 , 424, 201-207	2.9	102
692	Proving the suitability of magnetoelectric stimuli for tissue engineering applications. <i>Colloids and Surfaces B: Biointerfaces</i> , 2016 , 140, 430-436	6	99
691	Micro and nanofilms of poly(vinylidene fluoride) with controlled thickness, morphology and electroactive crystalline phase for sensor and actuator applications. <i>Smart Materials and Structures</i> , 2011 , 20, 087002	3.4	96

690	Effect of degree of porosity on the properties of poly(vinylidene fluoride t rifluorethylene) for Li-ion battery separators. <i>Journal of Membrane Science</i> , 2012 , 407-408, 193-201	9.6	95
689	Bacterial cellulose-lactoferrin as an antimicrobial edible packaging. <i>Food Hydrocolloids</i> , 2016 , 58, 126-1-	40 0.6	94
688	Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix: dielectric properties, simulations and experiments. <i>Nanotechnology</i> , 2009 , 20, 035703	3.4	94
687	Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes. <i>Science and Technology of Advanced Materials</i> , 2011 , 12, 015001	7.1	93
686	Ionic Liquid P olymer Composites: A New Platform for Multifunctional Applications. <i>Advanced Functional Materials</i> , 2020 , 30, 1909736	15.6	92
685	Advances and Future Challenges in Printed Batteries. <i>ChemSusChem</i> , 2015 , 8, 3539-55	8.3	92
684	Dielectric relaxation, ac conductivity and electric modulus in poly(vinylidene fluoride)/NaY zeolite composites. <i>Solid State Ionics</i> , 2013 , 235, 42-50	3.3	89
683	Relationship between processing conditions, defects and thermal degradation of poly(vinylidene fluoride) in the Ephase. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 72-78	3.9	89
682	Tailored Magnetic and Magnetoelectric Responses of Polymer-Based Composites. <i>ACS Applied Materials & ACS Applied Materials & ACS Applied</i>	9.5	86
681	Recent Advances in Poly(vinylidene fluoride) and Its Copolymers for Lithium-Ion Battery Separators. <i>Membranes</i> , 2018 , 8,	3.8	84
68o	New technique of processing highly oriented poly(vinylidene fluoride) films exclusively in the I phase. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2007 , 45, 2793-2801	2.6	84
679	Reusability of photocatalytic TiO2 and ZnO nanoparticles immobilized in poly(vinylidene difluoride)-co-trifluoroethylene. <i>Applied Surface Science</i> , 2016 , 384, 497-504	6.7	83
678	Enhanced proliferation of pre-osteoblastic cells by dynamic piezoelectric stimulation. <i>RSC Advances</i> , 2012 , 2, 11504	3.7	82
677	Hand EPVDF: Crystallization kinetics, microstructural variations and thermal behaviour. <i>Materials Chemistry and Physics</i> , 2010 , 122, 87-92	4.4	82
676	Polymer-based smart materials by printing technologies: Improving application and integration. <i>Additive Manufacturing</i> , 2018 , 21, 269-283	6.1	81
675	Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. <i>Carbohydrate Polymers</i> , 2012 , 87, 1295-1301	10.3	80
674	Energy harvesting performance of BaTiO3/poly(vinylidene fluorideErifluoroethylene) spin coated nanocomposites. <i>Composites Part B: Engineering</i> , 2015 , 72, 130-136	10	78
673	Correlation between crystallization kinetics and electroactive polymer phase nucleation in ferrite/poly(vinylidene fluoride) magnetoelectric nanocomposites. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 794-801	3.4	78

(2018-2004)

672	Dynamic mechanical analysis and creep behaviour of EPVDF films. <i>Materials Science & amp;</i> Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004 , 370, 336-340	5.3	78	
671	PHB-PEO electrospun fiber membranes containing chlorhexidine for drug delivery applications. <i>Polymer Testing</i> , 2014 , 34, 64-71	4.5	76	
670	Poly(vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications. <i>Polymer Testing</i> , 2015 , 44, 234-241	4.5	76	
669	Hto ITransformation on PVDF Films Obtained by Uniaxial Stretch. <i>Materials Science Forum</i> , 2006 , 514-516, 872-876	0.4	76	
668	Local variation of the dielectric properties of poly(vinylidene fluoride) during the \(\text{H}\to E\)hase transformation. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2009 , 373, 177-180	2.3	75	
667	Linear anhysteretic direct magnetoelectric effect in Ni0.5Zn0.5Fe2O4/poly(vinylidene fluoride-trifluoroethylene) 0-3 nanocomposites. <i>Journal Physics D: Applied Physics</i> , 2011 , 44, 482001	3	72	
666	Differentiation of mesenchymal stem cells for cartilage tissue engineering: Individual and synergetic effects of three-dimensional environment and mechanical loading. <i>Acta Biomaterialia</i> , 2016 , 33, 1-12	10.8	71	
665	Piezoelectric poly(vinylidene fluoride) microstructure and poling state in active tissue engineering. <i>Engineering in Life Sciences</i> , 2015 , 15, 351-356	3.4	70	
664	Development of inkjet printed strain sensors. Smart Materials and Structures, 2013, 22, 105028	3.4	70	
663	Development of magnetoelectric CoFe2O4 /poly(vinylidene fluoride) microspheres. <i>RSC Advances</i> , 2015 , 5, 35852-35857	3.7	69	
662	Effect of filler dispersion and dispersion method on the piezoelectric and magnetoelectric response of CoFe2O4/P(VDF-TrFE) nanocomposites. <i>Applied Surface Science</i> , 2014 , 313, 215-219	6.7	69	
661	Optimization of the magnetoelectric response of poly(vinylidene fluoride)/epoxy/Vitrovac laminates. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 10912-9	9.5	69	
660	Fibronectin adsorption and cell response on electroactive poly(vinylidene fluoride) films. <i>Biomedical Materials (Bristol)</i> , 2012 , 7, 035004	3.5	69	
659	Silk fibroin-magnetic hybrid composite electrospun fibers for tissue engineering applications. <i>Composites Part B: Engineering</i> , 2018 , 141, 70-75	10	68	
658	TiO2/graphene and TiO2/graphene oxide nanocomposites for photocatalytic applications: A computer modeling and experimental study. <i>Composites Part B: Engineering</i> , 2018 , 145, 39-46	10	66	
657	High-performance graphene-based carbon nanofiller/polymer composites for piezoresistive sensor applications. <i>Composites Science and Technology</i> , 2017 , 153, 241-252	8.6	66	
656	Effect of the ceramic grain size and concentration on the dynamical mechanical and dielectric behavior of poly(vinilidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. <i>Applied Physics A: Materials Science and Processing</i> , 2009 , 96, 899-908	2.6	66	
655	Photocatalytic reusable membranes for the effective degradation of tartrazine with a solar photoreactor. <i>Journal of Hazardous Materials</i> , 2018 , 344, 408-416	12.8	66	

654	Electro-mechanical properties of triblock copolymer styreneButadieneBtyrene/carbon nanotube composites for large deformation sensor applications. <i>Sensors and Actuators A: Physical</i> , 2013 , 201, 458	-467	65
653	Extruded thermoplastic elastomers styreneButadieneBtyrene/carbon nanotubes composites for strain sensor applications. <i>Composites Part B: Engineering</i> , 2014 , 57, 242-249	10	64
652	Effect of anion type in the performance of ionic liquid/poly(vinylidene fluoride) electromechanical actuators. <i>Journal of Non-Crystalline Solids</i> , 2016 , 453, 8-15	3.9	64
651	Effect of ionic liquid anion and cation on the physico-chemical properties of poly(vinylidene fluoride)/ionic liquid blends. <i>European Polymer Journal</i> , 2015 , 71, 304-313	5.2	63
650	Evaluation of dielectric models for ceramic/polymer composites: Effect of filler size and concentration. <i>Journal of Non-Crystalline Solids</i> , 2014 , 387, 6-15	3.9	63
649	Aluminosilicate and aluminosilicate based polymer composites: Present status, applications and future trends. <i>Progress in Surface Science</i> , 2014 , 89, 239-277	6.6	62
648	Tailoring porous structure of ferroelectric poly(vinylidene fluoride-trifluoroethylene) by controlling solvent/polymer ratio and solvent evaporation rate. <i>European Polymer Journal</i> , 2011 , 47, 2442-2450	5.2	62
647	Electrosprayed poly(vinylidene fluoride) microparticles for tissue engineering applications. <i>RSC Advances</i> , 2014 , 4, 33013-33021	3.7	61
646	Relaxation dynamics of poly(vinylidene fluoride) studied by dynamical mechanical measurements and dielectric spectroscopy. <i>European Physical Journal E</i> , 2012 , 35, 41	1.5	61
645	Novel Anisotropic Magnetoelectric Effect on FeO(OH)/P(VDF-TrFE) Multiferroic Composites. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 11224-9	9.5	60
644	Microstructural variations of poly(vinylidene fluoride co-hexafluoropropylene) and their influence on the thermal, dielectric and piezoelectric properties. <i>Polymer Testing</i> , 2014 , 40, 245-255	4.5	60
643	Mechanical, electrical and electro-mechanical properties of thermoplastic elastomer styreneButadieneBtyrene/multiwall carbon nanotubes composites. <i>Journal of Materials Science</i> , 2013 , 48, 1172-1179	4.3	60
642	Electrospun silk-elastin-like fibre mats for tissue engineering applications. <i>Biomedical Materials</i> (<i>Bristol</i>), 2013 , 8, 065009	3.5	60
641	Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettability. <i>Progress in Organic Coatings</i> , 2015 , 85, 151-158	4.8	59
640	Magnetoelectric CoFe2O4/polyvinylidene fluoride electrospun nanofibres. <i>Nanoscale</i> , 2015 , 7, 8058-61	7.7	59
639	TiO2/graphene oxide immobilized in P(VDF-TrFE) electrospun membranes with enhanced visible-light-induced photocatalytic performance. <i>Journal of Materials Science</i> , 2016 , 51, 6974-6986	4.3	59
638	Energy harvesting device based on a metallic glass/PVDF magnetoelectric laminated composite. Smart Materials and Structures, 2015 , 24, 065024	3.4	57
637	Understanding nucleation of the electroactive Ephase of poly(vinylidene fluoride) by nanostructures. <i>RSC Advances</i> , 2016 , 6, 113007-113015	3.7	57

(2013-2013)

636	Microporous membranes of NaY zeolite/poly(vinylidene fluoride l rifluoroethylene) for Li-ion battery separators. <i>Journal of Electroanalytical Chemistry</i> , 2013 , 689, 223-232	4.1	57
635	Degradation of the dielectric and piezoelectric response of Epoly(vinylidene fluoride) after temperature annealing. <i>Journal of Polymer Research</i> , 2011 , 18, 1451-1457	2.7	57
634	Bioinspired Three-Dimensional Magnetoactive Scaffolds for Bone Tissue Engineering. <i>ACS Applied Materials & ACS Applied & ACS Appl</i>	9.5	56
633	Improving Photocatalytic Performance and Recyclability by Development of Er-Doped and Er/Pr-Codoped TiO2/Poly(vinylidene difluoride) Il rifluoroethylene Composite Membranes. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 27944-27953	3.8	56
632	Influence of the chemical and electronic structure on the electrical behavior of zirconium oxynitride films. <i>Journal of Applied Physics</i> , 2008 , 103, 104907	2.5	56
631	Development of water-based printable piezoresistive sensors for large strain applications. <i>Composites Part B: Engineering</i> , 2017 , 112, 344-352	10	55
630	Lithium ion rechargeable batteries: State of the art and future needs of microscopic theoretical models and simulations. <i>Journal of Electroanalytical Chemistry</i> , 2015 , 739, 97-110	4.1	55
629	Thermal and hydrolytic degradation of electrospun fish gelatin membranes. <i>Polymer Testing</i> , 2013 , 32, 995-1000	4.5	55
628	Influence of crystallinity and fiber orientation on hydrophobicity and biological response of poly(L-lactide) electrospun mats. <i>Soft Matter</i> , 2012 , 8, 5818	3.6	54
627	Polymers for advanced lithium-ion batteries: State of the art and future needs on polymers for the different battery components. <i>Progress in Energy and Combustion Science</i> , 2020 , 79, 100846	33.6	53
626	Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties. <i>Journal of Materials Science</i> , 2014 , 49, 7476-7488	4.3	53
625	Mechanical vs. electrical hysteresis of carbon nanotube/styreneButadieneEtyrene composites and their influence in the electromechanical response. <i>Composites Science and Technology</i> , 2015 , 109, 1-5	8.6	51
624	Porous Membranes of Montmorillonite/Poly(vinylidene fluoride-trifluorethylene) for Li-Ion Battery Separators. <i>Electroanalysis</i> , 2012 , 24, 2147-2156	3	51
623	Recent Progress on Piezoelectric, Pyroelectric, and Magnetoelectric Polymer-Based Energy-Harvesting Devices. <i>Energy Technology</i> , 2019 , 7, 1800852	3.5	50
622	Enhancement of adhesion and promotion of osteogenic differentiation of human adipose stem cells by poled electroactive poly(vinylidene fluoride). <i>Journal of Biomedical Materials Research - Part A</i> , 2015 , 103, 919-28	5.4	50
621	Nanoparticle size and concentration dependence of the electroactive phase content and electrical and optical properties of Ag/poly(vinylidene fluoride) composites. <i>ChemPhysChem</i> , 2013 , 14, 1926-33	3.2	49
620	Silica/poly(vinylidene fluoride) porous composite membranes for lithium-ion battery separators. Journal of Membrane Science, 2018 , 564, 842-851	9.6	48
619	Relationship between electromechanical response and percolation threshold in carbon nanotube/poly(vinylidene fluoride) composites. <i>Carbon</i> , 2013 , 61, 568-576	10.4	48

618	In vivo demonstration of the suitability of piezoelectric stimuli for bone reparation. <i>Materials Letters</i> , 2017 , 209, 118-121	3.3	48
617	Local piezoelectric activity of single poly(L-lactic acid) (PLLA) microfibers. <i>Applied Physics A: Materials Science and Processing</i> , 2012 , 109, 51-55	2.6	48
616	Improving the optical and electroactive response of poly(vinylidene fluorideErifluoroethylene) spin-coated films for sensor and actuator applications. <i>Smart Materials and Structures</i> , 2012 , 21, 085020	3.4	48
615	The piezoresistive effect in polypropylenellarbon nanofibre composites obtained by shear extrusion. <i>Smart Materials and Structures</i> , 2010 , 19, 065013	3.4	48
614	Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities. <i>Energy Storage Materials</i> , 2021 , 37, 433-465	19.4	48
613	High performance screen-printed electrodes prepared by a green solvent approach for lithium-ion batteries. <i>Journal of Power Sources</i> , 2016 , 334, 65-77	8.9	48
612	Bacterial cellulose as a support for the growth of retinal pigment epithelium. <i>Biomacromolecules</i> , 2015 , 16, 1341-51	6.9	46
611	Strategies for the development of three dimensional scaffolds from piezoelectric poly(vinylidene fluoride). <i>Materials and Design</i> , 2016 , 92, 674-681	8.1	46
610	Kinetic study of thermal degradation of chitosan as a function of deacetylation degree. <i>Carbohydrate Polymers</i> , 2017 , 167, 52-58	10.3	45
609	High performance electromechanical actuators based on ionic liquid/poly(vinylidene fluoride). <i>Polymer Testing</i> , 2015 , 48, 199-205	4.5	45
608	State of the art and open questions on cathode preparation based on carbon coated lithium iron phosphate. <i>Composites Part B: Engineering</i> , 2015 , 83, 333-345	10	45
607	Photocatalytic and antimicrobial multifunctional nanocomposite membranes for emerging pollutants water treatment applications. <i>Chemosphere</i> , 2020 , 250, 126299	8.4	45
606	Metallic Glass/PVDF Magnetoelectric Laminates for Resonant Sensors and Actuators: A Review. <i>Sensors</i> , 2017 , 17,	3.8	45
605	Nucleation of the electroactive Phase, dielectric and magnetic response of poly(vinylidene fluoride) composites with Fe2O3 nanoparticles. <i>Journal of Non-Crystalline Solids</i> , 2013 , 361, 93-99	3.9	45
604	Improved performance of rare earth doped LiMn2O4 cathodes for lithium-ion battery applications. <i>New Journal of Chemistry</i> , 2016 , 40, 6244-6252	3.6	45
603	Electrospun styreneButadieneEtyrene elastomer copolymers for tissue engineering applications: Effect of butadiene/styrene ratio, block structure, hydrogenation and carbon nanotube loading on physical properties and cytotoxicity. <i>Composites Part B: Engineering</i> , 2014 , 67, 30-38	10	44
602	Surface roughness dependent osteoblast and fibroblast response on poly(L-lactide) films and electrospun membranes. <i>Journal of Biomedical Materials Research - Part A</i> , 2015 , 103, 2260-8	5.4	43
601	Multilayer spin-coating deposition of poly(vinylidene fluoride) films for controlling thickness and piezoelectric response. <i>Sensors and Actuators A: Physical</i> , 2013 , 192, 76-80	3.9	43

(2017-2005)

600	Atomistic modelling of processes involved in poling of PVDF. <i>Computational Materials Science</i> , 2005 , 33, 230-236	3.2	42
599	Property change in multifunctional TiCxOy thin films: Effect of the O/Ti ratio. <i>Thin Solid Films</i> , 2006 , 515, 866-871	2.2	42
598	Relation between fiber orientation and mechanical properties of nano-engineered poly(vinylidene fluoride) electrospun composite fiber mats. <i>Composites Part B: Engineering</i> , 2018 , 139, 146-154	10	42
597	Ionic Liquid Cation Size-Dependent Electromechanical Response of Ionic Liquid/Poly(vinylidene fluoride)-Based Soft Actuators. <i>Journal of Physical Chemistry C</i> , 2019 ,	3.8	41
596	Determination of the magnetostrictive response of nanoparticles via magnetoelectric measurements. <i>Nanoscale</i> , 2015 , 7, 9457-61	7.7	41
595	Recent advances and future challenges in printed batteries. <i>Energy Storage Materials</i> , 2020 , 28, 216-23-	419.4	41
594	Interface characterization and thermal degradation of ferrite/poly(vinylidene fluoride) multiferroic nanocomposites. <i>Journal of Materials Science</i> , 2013 , 48, 2681-2689	4.3	41
593	Variation of the physicochemical and morphological characteristics of solvent casted poly(vinylidene fluoride) along its binary phase diagram with dimethylformamide. <i>Journal of Non-Crystalline Solids</i> , 2015 , 412, 16-23	3.9	41
592	Effect of filler dispersion on the electromechanical response of epoxy/vapor-grown carbon nanofiber composites. <i>Smart Materials and Structures</i> , 2012 , 21, 075008	3.4	41
591	Relationship between the microstructure and the microscopic piezoelectric response of the <code>HandEphases</code> of poly(vinylidene fluoride). <i>Applied Physics A: Materials Science and Processing</i> , 2009 , 95, 875-8	8ð ^{.6}	41
590	PVD-Grown photocatalytic TiO2 thin films on PVDF substrates for sensors and actuators applications. <i>Thin Solid Films</i> , 2008 , 517, 1161-1166	2.2	41
589	Green solvent approach for printable large deformation thermoplastic elastomer based piezoresistive sensors and their suitability for biomedical applications. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2016, 54, 2092-2103	2.6	41
588	Development of poly(vinylidene fluoride)/ionic liquid electrospun fibers for tissue engineering applications. <i>Journal of Materials Science</i> , 2016 , 51, 4442-4450	4.3	40
587	Physical-chemical properties of cross-linked chitosan electrospun fiber mats. <i>Polymer Testing</i> , 2012 , 31, 1062-1069	4.5	40
586	Piezoresistive response of extruded polyaniline/(styrene-butadiene-styrene) polymer blends for force and deformation sensors. <i>Materials and Design</i> , 2018 , 141, 1-8	8.1	39
585	Cellulose-based magnetoelectric composites. <i>Nature Communications</i> , 2017 , 8, 38	17.4	39
584	ThermalThechanical behaviour of chitosantIellulose derivative thermoreversible hydrogel films. <i>Cellulose</i> , 2015 , 22, 1911-1929	5.5	38
583	On the Relevance of the Polar EPhase of Poly(vinylidene fluoride) for High Performance Lithium-lon Battery Separators. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 26216-26225	3.8	38

582	Local piezoelectric response of single poly(vinylidene fluoride) electrospun fibers. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2012 , 209, 2605-2609	1.6	38
581	Effect of the carbon nanotube surface characteristics on the conductivity and dielectric constant of carbon nanotube/poly(vinylidene fluoride) composites. <i>Nanoscale Research Letters</i> , 2011 , 6, 302	5	38
580	Influence of silver nanoparticles concentration on the alpha- to beta-phase transformation and the physical properties of silver nanoparticles doped poly(vinylidene fluoride) nanocomposites. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 2910-6	1.3	38
579	High performance screen printable lithium-ion battery cathode ink based on C-LiFePO4. <i>Electrochimica Acta</i> , 2016 , 196, 92-100	6.7	38
578	Improved response of ionic liquid-based bending actuators by tailored interaction with the polar fluorinated polymer matrix. <i>Electrochimica Acta</i> , 2019 , 296, 598-607	6.7	38
577	Nonsolvent induced phase separation preparation of poly(vinylidene fluoride-co-chlorotrifluoroethylene) membranes with tailored morphology, piezoelectric phase content and mechanical properties. <i>Materials and Design</i> , 2015 , 88, 390-397	8.1	37
576	Optimization of filler type within poly(vinylidene fluoride-co-trifluoroethylene) composite separator membranes for improved lithium-ion battery performance. <i>Composites Part B: Engineering</i> , 2016 , 96, 94-102	10	37
575	Electrical and thermal behavior of Ephase poly(vinylidene fluoride)/NaY zeolite composites. <i>Microporous and Mesoporous Materials</i> , 2012 , 161, 98-105	5.3	37
574	Isothermal crystallization kinetics of poly(vinylidene fluoride) in the phase in the scope of the Avrami equation. <i>Journal of Materials Science</i> , 2010 , 45, 1328-1335	4.3	37
573	Design and fabrication of multilayer inkjet-printed passive components for printed electronics circuit development. <i>Journal of Manufacturing Processes</i> , 2018 , 31, 364-371	5	37
572	Silk Fibroin Separators: A Step Toward Lithium-Ion Batteries with Enhanced Sustainability. <i>ACS Applied Materials & District Materials </i>	9.5	36
571	Piezoelectric actuators for acoustic mixing in microfluidic devices Numerical prediction and experimental validation of heat and mass transport. <i>Sensors and Actuators B: Chemical</i> , 2014 , 205, 206-2	2845	36
570	Novel poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blends for battery separators in lithium-ion applications. <i>Electrochimica Acta</i> , 2013 , 88, 473-476	6.7	36
569	Dielectric Behavior in an Oriented EPVDF Film and Chain Reorientation Upon Transverse Mechanical Deformation. <i>Ferroelectrics</i> , 2002 , 273, 15-20	0.6	36
568	Ciprofloxacin wastewater treated by UVA photocatalysis: contribution of irradiated TiO2 and ZnO nanoparticles on the final toxicity as assessed by Vibrio fischeri. <i>RSC Advances</i> , 2016 , 6, 95494-95503	3.7	36
567	Extrusion of poly(vinylidene fluoride) filaments: effect of the processing conditions and conductive inner core on the electroactive phase content and mechanical properties. <i>Journal of Polymer Research</i> , 2011 , 18, 1653-1658	2.7	35
566	The Role of Solvent Evaporation in the Microstructure of Electroactive Poly(Vinylidene Fluoride) Membranes Obtained by Isothermal Crystallization. <i>Soft Materials</i> , 2010 , 9, 1-14	1.7	35
565	Poly[(vinylidene fluoride)-co-trifluoroethylene] Membranes Obtained by Isothermal Crystallization from Solution. <i>Macromolecular Materials and Engineering</i> , 2010 , 295, 523-528	3.9	35

564	Electromechanical actuators based on poly(vinylidene fluoride) with [N1 1 1 2(OH)][NTf2] and [C2mim] [C2SO4]. <i>Journal of Materials Science</i> , 2016 , 51, 9490-9503	4.3	34	
563	Imidazolium-based ionic liquid type dependence of the bending response of polymer actuators. <i>European Polymer Journal</i> , 2016 , 85, 445-451	5.2	34	
562	Development of high sensitive polyaniline based piezoresistive films by conventional and green chemistry approaches. <i>Sensors and Actuators A: Physical</i> , 2014 , 220, 13-21	3.9	34	•
561	Osteoblast, fibroblast and in vivo biological response to poly(vinylidene fluoride) based composite materials. <i>Journal of Materials Science: Materials in Medicine</i> , 2013 , 24, 395-403	4.5	34	
560	. IEEE Transactions on Instrumentation and Measurement, 2009 , 58, 2830-2836	5.2	34	
559	The dominant role of tunneling in the conductivity of carbon nanofiber-epoxy composites. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2010 , 207, 407-410	1.6	34	
558	Photocatalytic degradation of recalcitrant micropollutants by reusable Fe 3 O 4 /SiO 2 /TiO 2 particles. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2017 , 345, 27-35	4.7	33	
557	Nanodiamonds/poly(vinylidene fluoride) composites for tissue engineering applications. <i>Composites Part B: Engineering</i> , 2017 , 111, 37-44	10	33	
556	Effect of butadiene/styrene ratio, block structure and carbon nanotube content on the mechanical and electrical properties of thermoplastic elastomers after UV ageing. <i>Polymer Testing</i> , 2015 , 42, 225-23	4 ·5	33	
555	Horizontal low gradient magnetophoresis behaviour of iron oxide nanoclusters at the different steps of the synthesis route. <i>Journal of Nanoparticle Research</i> , 2011 , 13, 3199-3206	2.3	33	
554	A green solvent strategy for the development of piezoelectric poly(vinylidene fluorideErifluoroethylene) films for sensors and actuators applications. <i>Materials and Design</i> , 2016 , 104, 183-189	8.1	33	
553	Magnetoelectric response on Terfenol-D/ P(VDF-TrFE) two-phase composites. <i>Composites Part B: Engineering</i> , 2017 , 120, 97-102	10	32	
552	Mesoporous Cellulose Nanocrystal Membranes as Battery Separators for Environmentally Safer Lithium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2019 , 2, 3749-3761	6.1	32	
551	Development of electrospun photocatalytic TiO2-polyamide-12 nanocomposites. <i>Materials Chemistry and Physics</i> , 2015 , 164, 91-97	4.4	32	
550	Comparative efficiency of TiO2 nanoparticles in suspension vs. immobilization into P(VDFIIrFE) porous membranes. <i>RSC Advances</i> , 2016 , 6, 12708-12716	3.7	32	
549	All-Inkjet-Printed Bottom-Gate Thin-Film Transistors Using UV Curable Dielectric for Well-Defined Source-Drain Electrodes. <i>Journal of Electronic Materials</i> , 2014 , 43, 2631-2636	1.9	32	
548	Composition-dependent physical properties of poly[(vinylidene fluoride)-co-trifluoroethylene]poly(ethylene oxide) blends. <i>Journal of Materials Science</i> , 2013 , 48, 3494-3	3504	32	
547	Fiber average size and distribution dependence on the electrospinning parameters of poly(vinylidene fluoridelifiluoroethylene) membranes for biomedical applications. <i>Applied Physics</i> A: Materials Science and Processing 2012 109, 685-691	2.6	32	

546	The effect of nanotube surface oxidation on the electrical properties of multiwall carbon nanotube/poly(vinylidene fluoride) composites. <i>Journal of Materials Science</i> , 2012 , 47, 8103-8111	4.3	32
545	Piezoresistive polymer blends for electromechanical sensor applications. <i>Composites Science and Technology</i> , 2018 , 168, 353-362	8.6	32
544	Computer simulations of the influence of geometry in the performance of conventional and unconventional lithium-ion batteries. <i>Applied Energy</i> , 2016 , 165, 318-328	10.7	31
543	Acetylated bacterial cellulose coated with urinary bladder matrix as a substrate for retinal pigment epithelium. <i>Colloids and Surfaces B: Biointerfaces</i> , 2016 , 139, 1-9	6	31
542	Superhydrophilic poly(l-lactic acid) electrospun membranes for biomedical applications obtained by argon and oxygen plasma treatment. <i>Applied Surface Science</i> , 2016 , 371, 74-82	6.7	31
541	Influence of the porosity degree of poly(vinylidene fluoride-co-hexafluoropropylene) separators in the performance of Li-ion batteries. <i>Journal of Power Sources</i> , 2014 , 263, 29-36	8.9	31
540	Tailoring poly(vinylidene fluoride-co-chlorotrifluoroethylene) microstructure and physicochemical properties by exploring its binary phase diagram with dimethylformamide. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2015 , 53, 761-773	2.6	31
539	Improved magnetodielectric coefficient on polymer based composites through enhanced indirect magnetoelectric coupling. <i>Applied Physics Letters</i> , 2016 , 109, 112905	3.4	31
538	Hydrogel-based magnetoelectric microenvironments for tissue stimulation. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 181, 1041-1047	6	30
537	Poly(vinylidene fluoride-hexafluoropropylene)/bayerite composite membranes for efficient arsenic removal from water. <i>Materials Chemistry and Physics</i> , 2016 , 183, 430-438	4.4	30
536	Electronic optimization for an energy harvesting system based on magnetoelectric Metglas/poly(vinylidene fluoride)/Metglas composites. <i>Smart Materials and Structures</i> , 2016 , 25, 08502	28 ^{3.4}	30
535	Electroactive biomaterial surface engineering effects on muscle cells differentiation. <i>Materials Science and Engineering C</i> , 2018 , 92, 868-874	8.3	30
534	Influence of electrospinning parameters on poly(hydroxybutyrate) electrospun membranes fiber size and distribution. <i>Polymer Engineering and Science</i> , 2014 , 54, 1608-1617	2.3	30
533	Surface wettability modification of poly(vinylidene fluoride) and copolymer films and membranes by plasma treatment. <i>Polymer</i> , 2019 , 169, 138-147	3.9	30
532	Bismuth-based heterojunction nanocomposites for photocatalysis and heavy metal detection applications. <i>Nano Structures Nano Objects</i> , 2021 , 27, 100762	5.6	30
531	Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) lithium-ion battery separator membranes prepared by phase inversion. <i>RSC Advances</i> , 2015 , 5, 90428-90436	3.7	29
530	Size effects on the magnetoelectric response on PVDF/Vitrovac 4040 laminate composites. <i>Journal of Magnetism and Magnetic Materials</i> , 2015 , 377, 29-33	2.8	29
529	Design and characterization of Ni2+ and Co2+ decorated Porous Magnetic Silica spheres synthesized by hydrothermal-assisted modified-StBer method for His-tagged proteins separation. <i>Journal of Colloid and Interface Science</i> , 2012 , 365, 156-62	9.3	29

528	Magnetic cellulose nanocrystal nanocomposites for the development of green functional materials. <i>Carbohydrate Polymers</i> , 2017 , 175, 425-432	10.3	29
527	Evaluation of the main processing parameters influencing the performance of poly(vinylidene fluoride E rifluoroethylene) lithium-ion battery separators. <i>Journal of Solid State Electrochemistry</i> , 2013 , 17, 861-870	2.6	29
526	Highly Sensitive Piezoresistive Graphene-Based Stretchable Composites for Sensing Applications. <i>ACS Applied Materials & ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	29
525	Enhanced ionic conductivity in poly(vinylidene fluoride) electrospun separator membranes blended with different ionic liquids for lithium ion batteries. <i>Journal of Colloid and Interface Science</i> , 2021 , 582, 376-386	9.3	29
524	Local probing of magnetoelectric properties of PVDF/FeO electrospun nanofibers by piezoresponse force microscopy. <i>Nanotechnology</i> , 2017 , 28, 065707	3.4	28
523	Degradation of all-inkjet-printed organic thin-film transistors with TIPS-pentacene under processes applied in textile manufacturing. <i>Organic Electronics</i> , 2015 , 22, 12-19	3.5	28
522	Influence of Cation and Anion Type on the Formation of the Electroactive Phase and Thermal and Dynamic Mechanical Properties of Poly(vinylidene fluoride)/Ionic Liquids Blends. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 27917-27926	3.8	28
521	Piezoresistive silicon thin film sensor array for biomedical applications. <i>Thin Solid Films</i> , 2011 , 519, 4574	- <u>45</u> 77	28
520	Performance of electroactive poly(vinylidene fluoride) against UV radiation. <i>Polymer Testing</i> , 2008 , 27, 818-822	4.5	28
519	Crystallization kinetics of montmorillonite/poly(vinylidene fluoride) composites and its correlation with the crystalline polymer phase formation. <i>Thermochimica Acta</i> , 2013 , 574, 19-25	2.9	27
518	Optimization of piezoelectric ultrasound emitter transducers for underwater communications. Sensors and Actuators A: Physical, 2012 , 184, 141-148	3.9	27
517	The influence of matrix mediated hopping conductivity, filler concentration, aspect ratio and orientation on the electrical response of carbon nanotube/polymer nanocomposites. <i>Composites Science and Technology</i> , 2011 , 71, 643-646	8.6	27
516	Influence of processing parameters on the polymer phase, microstructure and macroscopic properties of poly(vinilidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. <i>Journal of Non-Crystalline Solids</i> , 2010 , 356, 2127-2133	3.9	27
515	Optimized anisotropic magnetoelectric response of Fe61.6Co16.4Si10.8B11.2/PVDF/Fe61.6Co16.4Si10.8B11.2laminates for AC/DC magnetic field sensing. <i>Smart Materials and Structures</i> , 2016 , 25, 055050	3.4	27
514	Strong increase of the dielectric response of carbon nanotube/poly(vinylidene fluoride) composites induced by carbon nanotube type and pre-treatment. <i>Composites Part B: Engineering</i> , 2016 , 93, 310-316	10	27
513	Piezoresistive response of spray-printed carbon nanotube/poly(vinylidene fluoride) composites. <i>Composites Part B: Engineering</i> , 2016 , 96, 242-247	10	27
512	Recent developments on printed photodetectors for large area and flexible applications. <i>Organic Electronics</i> , 2019 , 66, 216-226	3.5	27
511	Highly Sensitive Humidity Sensor Based on Ionic Liquid Polymer Composites. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 2723-2730	4.3	26

510	Printed Wheatstone bridge with embedded polymer based piezoresistive sensors for strain sensing applications. <i>Additive Manufacturing</i> , 2018 , 20, 119-125	6.1	26
509	All-inkjet-printed low-pass filters with adjustable cutoff frequency consisting of resistors, inductors and transistors for sensor applications. <i>Organic Electronics</i> , 2016 , 38, 205-212	3.5	26
508	Effect of filler content on morphology and physical@hemical characteristics of poly(vinylidene fluoride)/NaY zeolite-filled membranes. <i>Journal of Materials Science</i> , 2014 , 49, 3361-3370	4.3	26
507	Effect of the microsctructure and lithium-ion content in poly[(vinylidene fluoride)-co-trifluoroethylene]/lithium perchlorate trihydrate composite membranes for battery applications. <i>Solid State Ionics</i> , 2012 , 217, 19-26	3.3	26
506	Development of solid polymer electrolytes based on poly(vinylidene fluoride-trifluoroethylene) and the [N1 1 1 2(OH)][NTf2] ionic liquid for energy storage applications. <i>Solid State Ionics</i> , 2013 , 253, 143-150	3.3	26
505	Bioactive albumin functionalized polylactic acid membranes for improved biocompatibility. <i>Reactive and Functional Polymers</i> , 2013 , 73, 1399-1404	4.6	26
504	Poly(vinylidene fluoride-trifluoroethylene)/NAY zeolite hybrid membranes as a drug release platform applied to ibuprofen release. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2015 , 469, 93-99	5.1	26
503	Physicochemical properties of poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blend membranes for lithium ion battery applications: Influence of poly(ethylene oxide) molecular weight. <i>Solid State Ionics</i> , 2014 , 268, 54-67	3.3	26
502	Thermo-sensitive chitosantellulose derivative hydrogels: swelling behaviour and morphologic studies. <i>Cellulose</i> , 2014 , 21, 4531-4544	5.5	26
501	Influence of fluoropolymer binders on the electrochemical performance of C-LiFePO 4 based cathodes. <i>Solid State Ionics</i> , 2016 , 295, 57-64	3.3	26
500	All-printed multilayer materials with improved magnetoelectric response. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 5394-5400	7.1	25
499	Polymer-based actuators: back to the future. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 15163-1518	323.6	25
498	Characterization of Metglas/poly(vinylidene fluoride)/Metglas magnetoelectric laminates for AC/DC magnetic sensor applications. <i>Materials and Design</i> , 2016 , 92, 906-910	8.1	25
497	Silk Fibroin Bending Actuators as an Approach Toward Natural Polymer Based Active Materials. <i>ACS Applied Materials & Description of the Applied Materials & Description of th</i>	9.5	25
496	Li-ion battery separator membranes based on barium titanate and poly(vinylidene fluoride-co-trifluoroethylene): Filler size and concentration effects. <i>Electrochimica Acta</i> , 2014 , 117, 276	5-2 8 4	25
495	Hydrothermal assisted synthesis of iron oxide-based magnetic silica spheres and their performance in magnetophoretic water purification. <i>Materials Chemistry and Physics</i> , 2012 , 135, 510-517	4.4	25
494	Enhancement of the Dielectric Constant and Thermal Properties of ⊕oly(vinylidene fluoride)/Zeolite Nanocomposites. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 14446-14452	3.8	25
493	. IEEE Transactions on Industrial Electronics, 2017 , 64, 4928-4934	8.9	24

(2012-2017)

492	Membranes based on polymer miscibility for selective transport and separation of metallic ions. Journal of Hazardous Materials, 2017 , 336, 188-194	12.8	24	
49 ¹	Ionic-Liquid-Based Electroactive Polymer Composites for Muscle Tissue Engineering. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 2649-2658	4.3	24	
490	Piezoresistive performance of polymer-based materials as a function of the matrix and nanofiller content to walking detection application. <i>Composites Science and Technology</i> , 2019 , 181, 107678	8.6	24	
489	Effect of the degree of porosity on the performance of poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blend membranes for lithium-ion battery separators. <i>Solid State Ionics</i> , 2015 , 280, 1-9	3.3	24	
488	Ionic and conformational mobility in poly(vinylidene fluoride)/ionic liquid blends: Dielectric and electrical conductivity behavior. <i>Polymer</i> , 2018 , 143, 164-172	3.9	24	
487	Development of a contactless DC current sensor with high linearity and sensitivity based on the magnetoelectric effect. <i>Smart Materials and Structures</i> , 2018 , 27, 065012	3.4	24	
486	Indirect X-ray Detectors Based on Inkjet-Printed Photodetectors with a Screen-Printed Scintillator Layer. <i>ACS Applied Materials & Description</i> (2018), 10, 12904-12912	9.5	24	
485	Low-field giant magneto-ionic response in polymer-based nanocomposites. <i>Nanoscale</i> , 2018 , 10, 15747	7-1/5754	1 24	
484	Polymer-based acoustic streaming for improving mixing and reaction times in microfluidic applications. <i>RSC Advances</i> , 2014 , 4, 4292-4300	3.7	24	
483	Hydrogel-based photonic sensor for a biopotential wearable recording system. <i>Biosensors and Bioelectronics</i> , 2010 , 26, 80-6	11.8	24	
482	Thermal characterization of a vinylidene fluoride-trifluorethylene (7505) (%mol) copolymer film. <i>Journal of Non-Crystalline Solids</i> , 2006 , 352, 5376-5381	3.9	24	
481	Tailoring silk fibroin separator membranes pore size for improving performance of lithium ion batteries. <i>Journal of Membrane Science</i> , 2020 , 598, 117678	9.6	24	
480	Theoretical simulation of the optimal relation between active material, binder and conductive additive for lithium-ion battery cathodes. <i>Energy</i> , 2019 , 172, 68-78	7.9	23	
479	Effect of Ionic Liquid Anion Type in the Performance of Solid Polymer Electrolytes Based on Poly(Vinylidene fluoride-trifluoroethylene). <i>Electroanalysis</i> , 2015 , 27, 457-464	3	23	
478	The Influence of Copolymer Composition on PLGA/nHA Scaffolds' Cytotoxicity and In Vitro Degradation. <i>Nanomaterials</i> , 2017 , 7,	5.4	23	
477	Tailoring Bacteria Response by Piezoelectric Stimulation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 27297-27305	9.5	23	
476	Preparation of Poly(vinylidene fluoride) Lithium-Ion Battery Separators and Their Compatibilization with Ionic Liquid IA Green Solvent Approach. <i>ChemistrySelect</i> , 2017 , 2, 5394-5402	1.8	23	
475	The role of disorder on the AC and DC electrical conductivity of vapour grown carbon nanofibre/epoxy composites. <i>Composites Science and Technology</i> , 2012 , 72, 243-247	8.6	23	

474	Applying complex network theory to the understanding of high-aspect-ratio carbon-filled composites. <i>Europhysics Letters</i> , 2011 , 93, 37005	1.6	23
473	Structural and electrical properties of Al doped ZnO thin films deposited at room temperature on poly(vinilidene fluoride) substrates. <i>Thin Solid Films</i> , 2009 , 517, 6290-6293	2.2	23
472	Magnetoelectrics: Three Centuries of Research Heading towards the 4.0 Industrial Revolution. <i>Materials</i> , 2020 , 13,	3.5	23
471	Influence of Solvent Evaporation Rate in the Preparation of Carbon-Coated Lithium Iron Phosphate Cathode Films on Battery Performance. <i>Energy Technology</i> , 2016 , 4, 573-582	3.5	23
470	Polymer Nanocomposite-Based Strain Sensors with Tailored Processability and Improved Device Integration. <i>ACS Applied Nano Materials</i> , 2018 , 1, 3015-3025	5.6	23
469	Water-Soluble Cellulose Derivatives as Suitable Matrices for Multifunctional Materials. <i>Biomacromolecules</i> , 2019 , 20, 2786-2795	6.9	22
468	Ionic-Liquid-Based Printable Materials for Thermochromic and Thermoresistive Applications. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 11, 20316-20324	9.5	22
467	Antibacterial performance of bovine lactoferrin-fish gelatine electrospun membranes. <i>International Journal of Biological Macromolecules</i> , 2015 , 81, 608-14	7.9	22
466	Carbon nanofiber type and content dependence of the physical properties of carbon nanofiber reinforced polypropylene composites. <i>Polymer Engineering and Science</i> , 2014 , 54, 117-128	2.3	22
465	Influence of NH4-Rb substitution on the phase transitions with different kinds of proton disorder in mixed [(NH4)1 \square Rb x]3H(SO4)2 crystals. <i>Ferroelectrics</i> , 1998 , 217, 285-295	0.6	22
464	One-Step In Situ Synthesis of Polyamide Microcapsules With Inorganic Payload and Their Transformation into Responsive Thermoplastic Composite Materials. <i>Macromolecular Materials and Engineering</i> , 2016 , 301, 119-124	3.9	22
463	Influence of the sputtering pressure on the morphological features and electrical resistivity anisotropy of nanostructured titanium films. <i>Applied Surface Science</i> , 2017 , 420, 681-690	6.7	21
462	Mesoporous poly(vinylidene fluoride-co-trifluoroethylene) membranes for lithium-ion battery separators. <i>Electrochimica Acta</i> , 2019 , 301, 97-106	6.7	21
461	Synthesis, physical and magnetic properties of BaFe12O19/P(VDF-TrFE) multifunctional composites. <i>European Polymer Journal</i> , 2015 , 69, 224-231	5.2	21
460	Enhanced Photocatalytic Activity of Au/TiO2 Nanoparticles against Ciprofloxacin. <i>Catalysts</i> , 2020 , 10, 234	4	21
459	Highly efficient removal of fluoride from aqueous media through polymer composite membranes. <i>Separation and Purification Technology</i> , 2018 , 205, 1-10	8.3	21
458	Influence of fiber diameter and crystallinity on the stability of electrospun poly(l-lactic acid) membranes to hydrolytic degradation. <i>Polymer Testing</i> , 2012 , 31, 770-776	4.5	21
457	Large linear anhysteretic magnetoelectric voltage coefficients in CoFe2O4/polyvinylidene fluoride OB nanocomposites. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	21

456	Influence of zeolite structure and chemistry on the electrical response and crystallization phase of poly(vinylidene fluoride). <i>Journal of Materials Science</i> , 2013 , 48, 2199-2206	4.3	21
455	Cyclic temperature dependence of electrical conductivity in polyanilines as a function of the dopant and synthesis method. <i>Materials and Design</i> , 2017 , 114, 288-296	8.1	21
454	Strain analysis of photocatalytic TiO2 thin films on polymer substrates. <i>Thin Solid Films</i> , 2008 , 516, 1434	-1. <u>4</u> 38	21
453	Spray-printed magnetoelectric multifunctional composites. <i>Composites Part B: Engineering</i> , 2020 , 187, 107829	10	21
452	Processing and size range separation of pristine and magnetic poly(l-lactic acid) based microspheres for biomedical applications. <i>Journal of Colloid and Interface Science</i> , 2016 , 476, 79-86	9.3	20
451	Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride) Microsphere Substrates. <i>International Journal of Molecular Sciences</i> , 2017 , 18,	6.3	20
450	Modeling separator membranes physical characteristics for optimized lithium ion battery performance. <i>Solid State Ionics</i> , 2015 , 278, 78-84	3.3	20
449	Thermal Properties of Electrospun Poly(Lactic Acid) Membranes. <i>Journal of Macromolecular Science - Physics</i> , 2012 , 51, 411-424	1.4	20
448	The influence of the dispersion method on the electrical properties of vapor-grown carbon nanofiber/epoxy composites. <i>Nanoscale Research Letters</i> , 2011 , 6, 370	5	20
447	Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 2585-2589	3.9	20
446	Physical and morphological characterization of reactively magnetron sputtered TiN films. <i>Thin Solid Films</i> , 2002 , 420-421, 421-428	2.2	20
445	EGlycerol phosphate/genipin chitosan hydrogels: A comparative study of their properties and diclofenac delivery. <i>Carbohydrate Polymers</i> , 2020 , 248, 116811	10.3	20
444	Chitosan patterning on titanium implants. <i>Progress in Organic Coatings</i> , 2017 , 111, 23-28	4.8	19
443	Optimized silk fibroin piezoresistive nanocomposites for pressure sensing applications based on natural polymers. <i>Nanoscale Advances</i> , 2019 , 1, 2284-2292	5.1	19
442	Poly(vinylidene fluoride) composites with carbon nanotubes decorated with metal nanoparticles. <i>Composites Part B: Engineering</i> , 2018 , 142, 1-8	10	19
441	Synthesis and size dependent magnetostrictive response of ferrite nanoparticles and their application in magnetoelectric polymer-based multiferroic sensors. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 10701-10706	7.1	19
440	Magnetically Controlled Drug Release System through Magnetomechanical Actuation. <i>Advanced Healthcare Materials</i> , 2016 , 5, 3027-3034	10.1	19
439	Li-ion battery separator membranes based on poly(vinylidene fluoride-trifluoroethylene)/carbon nanotube composites. <i>Solid State Ionics</i> , 2013 , 249-250, 63-71	3.3	19

438	Piezoresistive effect in spin-coated polyaniline thin films. <i>Journal of Polymer Research</i> , 2012 , 19, 1	2.7	19
437	Effect of the mechanical stretching on the ferroelectric properties of a (VDF/TrFE) (75/25) copolymer film. <i>Solid State Communications</i> , 2004 , 129, 5-8	1.6	19
436	Gd2O3:Eu Nanoparticle-Based Poly(vinylidene fluoride) Composites for Indirect X-ray Detection. <i>Journal of Electronic Materials</i> , 2015 , 44, 129-135	1.9	18
435	Polypropylene-Carbon Nanofiber Composites as Strain-Gauge Sensor. <i>IEEE Sensors Journal</i> , 2013 , 13, 2603-2609	4	18
434	Piezoresistive response of carbon nanotubes-polyamides composites processed by extrusion. Journal of Polymer Research, 2013 , 20, 1	2.7	18
433	Fatigue prediction in fibrin poly-Etaprolactone macroporous scaffolds. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2013 , 28, 55-61	4.1	18
432	Exploring the Properties of Genetically Engineered Silk-Elastin-Like Protein Films. <i>Macromolecular Bioscience</i> , 2015 , 15, 1698-709	5.5	18
431	Electroactive Poly(Vinylidene Fluoride-Trifluorethylene) (PVDF-TrFE) Microporous Membranes for Lithium-Ion Battery Applications. <i>Ferroelectrics</i> , 2012 , 430, 103-107	0.6	18
430	Giant Electric-Field-Induced Strain in PVDF-Based Battery Separator Membranes Probed by Electrochemical Strain Microscopy. <i>Langmuir</i> , 2016 , 32, 5267-76	4	18
429	Synthesis of highly magnetostrictive nanostructures and their application in a polymer-based magnetoelectric sensing device. <i>European Polymer Journal</i> , 2016 , 84, 685-692	5.2	18
428	On the use of surfactants for improving nanofiller dispersion and piezoresistive response in stretchable polymer composites. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 10580-10588	7.1	18
427	Hybrid Bionanocomposite Containing Magnesium Hydroxide Nanoparticles Embedded in a Carboxymethyl Cellulose Hydrogel Plus Silk Fibroin as a Scaffold for Wound Dressing Applications. <i>ACS Applied Materials & Dressing Applications</i> .	9.5	18
426	Photocatalytic Microporous Membrane against the Increasing Problem of Water Emerging Pollutants. <i>Materials</i> , 2019 , 12,	3.5	17
425	Silk fibroin magnetoactive nanocomposite films and membranes for dynamic bone tissue engineering strategies. <i>Materialia</i> , 2020 , 12, 100709	3.2	17
424	Piezo- and Magnetoelectric Polymers as Biomaterials for Novel Tissue Engineering Strategies. <i>MRS Advances</i> , 2018 , 3, 1671-1676	0.7	17
423	Environmentally Friendly Printable Piezoelectric Inks and Their Application in the Development of All-Printed Touch Screens. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 1678-1687	4	17
422	Nanostructured functional TiAg electrodes for large deformation sensor applications. <i>Sensors and Actuators A: Physical</i> , 2014 , 220, 204-212	3.9	17
421	Electroactive Polymers as Actuators 2017 , 319-352		17

(2021-2015)

High-temperature polymer based magnetoelectric nanocomposites. <i>European Polymer Journal</i> , 2015 , 64, 224-228	5.2	17	
Piezoelectric coaxial filaments produced by coextrusion of poly(vinylidene fluoride) and electrically conductive inner and outer layers. <i>Journal of Applied Polymer Science</i> , 2014 , 131, n/a-n/a	2.9	17	
Influence of filler size and concentration on the low and high temperature dielectric response of poly(vinylidene fluoride) /Pb(Zr0.53Ti0.47)O3 composites. <i>Journal of Polymer Research</i> , 2012 , 19, 1	2.7	17	
Effect of fiber orientation in gelled poly(vinylidene fluoride) electrospun membranes for Li-ion battery applications. <i>Journal of Materials Science</i> , 2013 , 48, 6833-6840	4.3	17	
Effect of zeolite content in the electrical, mechanical and thermal degradation response of poly(vinylidene fluoride)/NaY zeolite composites. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 6804-10	1.3	17	
Lab-on-a-chip with beta-poly(vinylidene fluoride) based acoustic microagitation. <i>IEEE Transactions on Biomedical Engineering</i> , 2010 , 57, 1184-90	5	17	
Mechanical Characterization and Influence of the High Temperature Shrinkage of EPVDF Films on its Electromechanical Properties. <i>Ferroelectrics</i> , 2003 , 294, 61-71	0.6	17	
Evaluation and optimization of the magnetoelectric response of CoFe2O4/poly(vinylidene fluoride) composite spheres by computer simulation. <i>Composites Science and Technology</i> , 2017 , 146, 119-130	8.6	16	
Polymer-based magnetoelectric materials: To be or not to be. <i>Applied Materials Today</i> , 2019 , 15, 558-5	61 6.6	16	
Gd2O3:Eu3+/PPO/POPOP/PS composites for digital imaging radiation detectors. <i>Applied Physics A: Materials Science and Processing</i> , 2015 , 121, 581-587	2.6	16	
Hydrophobic modification of bacterial cellulose using oxygen plasma treatment and chemical vapor deposition. <i>Cellulose</i> , 2020 , 27, 10733-10746	5.5	16	
Phase nucleation and electrical response of poly(vinylidene fluoride)/microporous titanosilicates composites. <i>Materials Chemistry and Physics</i> , 2013 , 138, 553-558	4.4	16	
Wide-Range Magnetoelectric Response on Hybrid Polymer Composites Based on Filler Type and Content. <i>Polymers</i> , 2017 , 9,	4.5	16	
Thermal, dielectrical and mechanical response of <code>and</code> <code>boly(vinilydene fluoride)/Co-MgO nanocomposites. <i>Nanoscale Research Letters</i>, 2011, 6, 257</code>	5	16	
Microscopic origin of the high-strain mechanical response of poled and non-poled poly(vinylidene fluoride) in the Ephase. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 3871-3876	3.9	16	
CMOS X-rays detector array based on scintillating light guides. <i>Sensors and Actuators A: Physical</i> , 2004 , 110, 119-123	3.9	16	
Preparation and properties of metal-containing polyamide hybrid composites via reactive microencapsulation. <i>Journal of Materials Science</i> , 2016 , 51, 10534-10554	4.3	16	
Crystal morphology control of synthetic giniite for enhanced photo-Fenton activity against the emerging pollutant metronidazole. <i>Chemosphere</i> , 2021 , 262, 128300	8.4	16	
	Piezoelectric coaxial filaments produced by coextrusion of poly(vinylidene fluoride) and electrically conductive inner and outer layers. <i>Journal of Applied Polymer Science</i> , 2014, 131, n/a-n/a Influence of filler size and concentration on the low and high temperature dielectric response of poly(vinylidene fluoride) (Pb(Zro.53710.47)O3 composites. <i>Journal of Polymer Research</i> , 2012, 19, 1 Effect of fiber orientation in gelled poly(vinylidene fluoride) electrospun membranes for Li-ion battery applications. <i>Journal of Materials Science</i> , 2013, 48, 6833-6840 Effect of zeolite content in the electrical, mechanical and thermal degradation response of poly(vinylidene fluoride)/NaY zeolite composites. <i>Journal of Nanoscience and Nanotechnology</i> , 2012, 12, 6804-10 Lab-on-a-chip with beta-poly(vinylidene fluoride) based acoustic microagitation. <i>IEEE Transactions on Biomedical Engineering</i> , 2010, 57, 1184-90 Mechanical Characterization and Influence of the High Temperature Shrinkage of BPVDF Films on its Electromechanical Properties. <i>Ferroelectrics</i> , 2003, 294, 61-71 Evaluation and optimization of the magnetoelectric response of CoFe2O4/poly(vinylidene fluoride) composite spheres by computer simulation. <i>Composites Science and Technology</i> , 2017, 146, 119-130 Polymer-based magnetoelectric materials: To be or not to be. <i>Applied Materials Today</i> , 2019, 15, 558-5 Gd2O3:Eu3+/PPO/POPOP/PS composites for digital imaging radiation detectors. <i>Applied Physics A: Materials Science and Processing</i> , 2015, 121, 581-587 Hydrophobic modification of bacterial cellulose using oxygen plasma treatment and chemical vapor deposition. <i>Cellulose</i> , 2020, 27, 10733-10746 BPhase nucleation and electrical response of poly(vinylidene fluoride)/microporous titanosilicates composites. <i>Materials Chemistry and Physics</i> , 2013, 138, 553-558 Wide-Range Magnetoelectric Response on Hybrid Polymer Composites Based on Filler Type and Content. <i>Polymers</i> , 2017, 9, Thermal, dielectrical and mechanical response of Biand Bpoly(vinilydene fluori	Piezoelectric coaxial filaments produced by coextrusion of poly(vinylidene fluoride) and electrically conductive inner and outer layers. <i>Journal of Applied Polymer Science</i> , 2014, 131, n/a-n/a Influence of filler size and concentration on the low and high temperature dielectric response of poly(vinylidene fluoride) /Pb(Zr0.53Ti0.47)/03 composites. <i>Journal of Polymer Research</i> , 2012, 19, 1 Effect of fiber orientation in gelled poly(vinylidene fluoride) electrospun membranes for Li-ion battery applications. <i>Journal of Materials Science</i> , 2013, 48, 6833-6840 Effect of zeolite content in the electrical, mechanical and thermal degradation response of poly(vinylidene fluoride)/NaY zeolite composites. <i>Journal of Nanoscience and Nanotechnology</i> , 2012, 12, 6804-10 Lab-on-a-chip with beta-poly(vinylidene fluoride) based acoustic microagitation. <i>IEEE Transactions on Biomedical Engineering</i> , 2010, 57, 1184-90 Mechanical Characterization and Influence of the High Temperature Shrinkage of BPVDF Films on its Electromechanical Properties. <i>Ferroelectrics</i> , 2003, 294, 61-71 Evaluation and optimization of the magnetoelectric response of CoFe2O4/poly(vinylidene fluoride) composite spheres by computer simulation. <i>Composites Science and Technology</i> , 2017, 146, 119-130 Polymer-based magnetoelectric materials: To be or not to be. <i>Applied Materials Today</i> , 2019, 15, 558-5616.6 Gd2O3:Eu3+/PPO/POPOP/PS composites for digital imaging radiation detectors. <i>Applied Physics A: Materials Science and Processing</i> , 2015, 121, 581-587 Hydrophobic modification of bacterial cellulose using oxygen plasma treatment and chemical vapor deposition. <i>Cellulose</i> , 2020, 27, 10733-10746 Phase nucleation and electrical response of poly(vinylidene fluoride)/microporous titanosilicates composites. <i>Materials Science and Physics</i> , 2013, 138, 553-558 Wide-Range Magnetoelectric Response on Hybrid Polymer Composites Based on Filler Type and Content. <i>Polymers</i> , 2017, 9. Thermal, dielectrical and mechanical response of poled and non-poled poly(v	Piezoelectric coaxial filaments produced by coextrusion of poly(vinylidene fluoride) and electrically conductive inner and outer layers. <i>Journal of Applied Polymer Science</i> , 2014, 131, 1/a-1/a Influence of filler size and concentration on the low and high temperature dielectric response of poly(vinylidene fluoride) /Pb(ZriO,53TiO.47)O3 composites. <i>Journal of Polymer Research</i> , 2012, 19, 1 27 17 Effect of fiber orientation in gelled poly(vinylidene fluoride) electrospun membranes for Li-ion battery applications. <i>Journal of Materials Science</i> , 2013, 48, 683-6840 Effect of zeolite content in the electrical, mechanical and thermal degradation response of poly(vinylidene fluoride)/NaY zeolite composites. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 Lab-on-a-chip with beta-poly(vinylidene fluoride) based acoustic microagitation. <i>IEEE Transactions on Biamedical Engineering</i> , 2010, 57, 1884-90 Mechanical Characterization and Influence of the High Temperature Shrinkage of BPVDF films on its Electromechanical Properties. <i>Ferroelectrics</i> , 2003, 294, 61-71 Evaluation and optimization of the magnetoelectric response of CoFe2O4/poly(vinylidene fluoride) composites spheres by computer simulation. <i>Composites Science and Technology</i> , 2017, 146, 119-130 Polymer-based magnetoelectric materials: To be or not to be. <i>Applied Materials Today</i> , 2019, 15, 558-56-66 Gd2O3:Eu3+/PPO/POPO/PPS composites for digital imaging radiation detectors. <i>Applied Physics A: Materials Science and Processing</i> , 2015, 121, 581-587 Hydrophobic modification of bacterial cellulose using oxygen plasma treatment and chemical vapor deposition. <i>Cellulose</i> , 2020, 27, 10733-10746 Phase nucleation and electrical response of poly(vinylidene fluoride)/microporous titanosilicates composites. <i>Materials Chemistry and Physics</i> , 2013, 138, 553-558 Wide-Range Magnetoelectric Response on Hybrid Polymer Composites Based on Filler Type and Content. <i>Polymers</i> , 2017, 9, Thermal, dielectrical and mechanical response of poled and non-poled poly(vinyli

402	Novel hybrid multifunctional magnetoelectric porous composite films. <i>Journal of Magnetism and Magnetic Materials</i> , 2015 , 396, 237-241	2.8	15
401	Poly(vinylidene fluoride-trifluoroethylene) Porous Films: Tailoring Microstructure and Physical Properties by Solvent Casting Strategies. <i>Soft Materials</i> , 2015 , 13, 243-253	1.7	15
400	Tailored Biodegradable and Electroactive Poly(Hydroxybutyrate-Co-Hydroxyvalerate) Based Morphologies for Tissue Engineering Applications. <i>International Journal of Molecular Sciences</i> , 2018 , 19,	6.3	15
399	Magnetic ionic liquid/polymer composites: Tailoring physico-chemical properties by ionic liquid content and solvent evaporation temperature. <i>Composites Part B: Engineering</i> , 2019 , 178, 107516	10	15
398	Modifying Fish Gelatin Electrospun Membranes for Biomedical Applications: Cross-Linking and Swelling Behavior. <i>Soft Materials</i> , 2014 , 12, 247-252	1.7	15
397	Effect of antistatic additives on mechanical and electrical properties of polyethylene foams. Journal of Applied Polymer Science, 2009 , 112, 1595-1600	2.9	15
396	Influence of air oxidation on the properties of decorative NbOxNy coatings prepared by reactive gas pulsing. <i>Surface and Coatings Technology</i> , 2008 , 202, 2363-2367	4.4	15
395	Investigations on dielectric and structural properties of ferroelectric betaine phosphite (BPI). <i>Journal of Physics Condensed Matter</i> , 1995 , 7, 9305-9319	1.8	15
394	Polymer-Based Membranes for Oily Wastewater Remediation. <i>Polymers</i> , 2019 , 12,	4.5	15
393	Metal®rganic Framework Based PVDF Separators for High Rate Cycling Lithium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2020 , 3, 11907-11919	6.1	15
392	Physically Active Bioreactors for Tissue Engineering Applications. <i>Advanced Biology</i> , 2020 , 4, e2000125	3.5	15
391	Water-Based Graphene Inks for All-Printed Temperature and Deformation Sensors. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 2857-2867	4	15
390	Effect of cyano dipolar groups on the performance of lithium-ion battery electrospun polyimide gel electrolyte membranes. <i>Journal of Electroanalytical Chemistry</i> , 2016 , 778, 57-65	4.1	15
389	Development of Magnetically Active Scaffolds for Bone Regeneration. <i>Nanomaterials</i> , 2018 , 8,	5.4	15
388	Stimuli responsive UV cured polyurethane acrylated/carbon nanotube composites for piezoresistive sensing. <i>European Polymer Journal</i> , 2019 , 120, 109226	5.2	14
387	Enhanced performance of fluorinated separator membranes for lithium ion batteries through surface micropatterning. <i>Energy Storage Materials</i> , 2019 , 21, 124-135	19.4	14
386	Molecular relaxation and ionic conductivity of ionic liquids confined in a poly(vinylidene fluoride) polymer matrix: Influence of anion and cation type. <i>Polymer</i> , 2019 , 171, 58-69	3.9	14
385	Electromechanical Properties of PVDF-Based Polymers Reinforced with Nanocarbonaceous Fillers for Pressure Sensing Applications. <i>Materials</i> , 2019 , 12,	3.5	14

(2005-2012)

384	Quantitative evaluation of the dispersion achievable using different preparation methods and DC electrical conductivity of vapor grown carbon nanofiber/epoxy composites. <i>Polymer Testing</i> , 2012 , 31, 697-704	4.5	14
383	Rheological and electrical analysis in carbon nanofiber reinforced polypropylene composites. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2013 , 51, 207-213	2.6	14
382	Phase morphology and crystallinity of poly(vinylidene fluoride)/poly(ethylene oxide) piezoelectric blend membranes. <i>Materials Today Communications</i> , 2015 , 4, 214-221	2.5	14
381	Polysaccharide-Based In Situ Self-Healing Hydrogels for Tissue Engineering Applications. <i>Polymers</i> , 2020 , 12,	4.5	14
380	Cellulose and its derivatives for lithium ion battery separators: A review on the processing methods and properties. <i>Carbohydrate Polymer Technologies and Applications</i> , 2020 , 1, 100001	1.7	14
379	High dielectric constant UV curable polyurethane acrylate/indium tin oxide composites for capacitive sensing. <i>Composites Science and Technology</i> , 2020 , 199, 108363	8.6	14
378	From superhydrophobic- to superhydrophilic-patterned poly(vinylidene fluoride-co-chlorotrifluoroethylene) architectures as a novel platform for biotechnological applications. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2016 , 54, 1802-1810	2.6	14
377	Piezoresistive response of nano-architectured Ti x Cu y thin films for sensor applications. <i>Sensors and Actuators A: Physical</i> , 2016 , 247, 105-114	3.9	14
376	Magnetic Copper Ferrite Nanoparticles Functionalized by Aromatic Polyamide Chains for Hyperthermia Applications. <i>Langmuir</i> , 2021 , 37, 8847-8854	4	14
375	Vineyard calcium sprays induce changes in grape berry skin, firmness, cell wall composition and expression of cell wall-related genes. <i>Plant Physiology and Biochemistry</i> , 2020 , 150, 49-55	5.4	13
374	Computer simulation of the influence of thermal conditions on the performance of conventional and unconventional lithium-ion battery geometries. <i>Energy</i> , 2018 , 149, 262-278	7.9	13
373	Multifunctional electromechanical and thermoelectric polyanilinepoly(vinyl acetate) latex composites for wearable devices. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 8502-8512	7.1	13
372	Nano-sculptured Janus-like TiAg thin films obliquely deposited by GLAD co-sputtering for temperature sensing. <i>Nanotechnology</i> , 2018 , 29, 355706	3.4	13
371	Transparent Magnetoelectric Materials for Advanced Invisible Electronic Applications. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900280	6.4	13
370	Electrical properties of intrinsically conductive core\(\frac{1}{2}\) hell polypyrrole/poly(vinylidene fluoride) electrospun fibers. Synthetic Metals, 2014, 197, 198-203	3.6	13
369	Influence of fiber aspect ratio and orientation on the dielectric properties of polymer-based nanocomposites. <i>Journal of Materials Science</i> , 2010 , 45, 268-270	4.3	13
368	Stability of the electroactive response of Epoly(vinylidene fluoride) for applications in the petrochemical industry. <i>Polymer Testing</i> , 2010 , 29, 613-615	4.5	13
367	Poling of Epoly(vinylidene fluoride): dielectric and IR spectroscopy studies. <i>E-Polymers</i> , 2005 , 5,	2.7	13

366	Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes. <i>Science and Technology of Advanced Materials</i> , 2011 , 12, 015001	7.1	13
365	Reconfigurable 3D-printable magnets with improved maximum energy product. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 952-958	7.1	13
364	Computer simulation evaluation of the geometrical parameters affecting the performance of two dimensional interdigitated batteries. <i>Journal of Electroanalytical Chemistry</i> , 2016 , 780, 1-11	4.1	13
363	Processing Strategies to Obtain Highly Porous Silk Fibroin Structures with Tailored Microstructure and Molecular Characteristics and Their Applicability in Water Remediation. <i>Journal of Hazardous Materials</i> , 2021 , 403, 123675	12.8	13
362	Multifunctional Platform Based on Electroactive Polymers and Silica Nanoparticles for Tissue Engineering Applications. <i>Nanomaterials</i> , 2018 , 8,	5.4	13
361	Ionic Liquid-Based Materials for Biomedical Applications. <i>Nanomaterials</i> , 2021 , 11,	5.4	13
360	Tailoring microstructure and physical properties of poly(vinylidene fluoridellexafluoropropylene) porous films. <i>Journal of Materials Science</i> , 2015 , 50, 5047-5058	4.3	12
359	In vitro mechanical fatigue behavior of poly-e-caprolactone macroporous scaffolds for cartilage tissue engineering: Influence of pore filling by a poly(vinyl alcohol) gel. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2015 , 103, 1037-43	3.5	12
358	Magnetically Activated Electroactive Microenvironments for Skeletal Muscle Tissue Regeneration <i>ACS Applied Bio Materials</i> , 2020 , 3, 4239-4252	4.1	12
357	Improving Magnetoelectric Contactless Sensing and Actuation through Anisotropic Nanostructures. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 19189-19196	3.8	12
356	Electroactive Smart Materials: Novel Tools for Tailoring Bacteria Behavior and Fight Antimicrobial Resistance. <i>Frontiers in Bioengineering and Biotechnology</i> , 2019 , 7, 277	5.8	12
355	Numerical prediction of acoustic streaming in a microcuvette. <i>Canadian Journal of Chemical Engineering</i> , 2014 , 92, 1988-1998	2.3	12
354	Ti1⊠Agx electrodes deposited on polymer based sensors. <i>Applied Surface Science</i> , 2014 , 317, 490-495	6.7	12
353	Dielectric relaxation dynamics of high-temperature piezoelectric polyimide copolymers. <i>Applied Physics A: Materials Science and Processing</i> , 2015 , 120, 731-743	2.6	12
352	Assessment of parameters influencing fiber characteristics of chitosan nanofiber membrane to optimize fiber mat production. <i>Polymer Engineering and Science</i> , 2012 , 52, 1293-1300	2.3	12
351	Piezoresistive properties of nanocrystalline silicon thin films deposited on plastic substrates by hot-wire chemical vapor deposition. <i>Thin Solid Films</i> , 2007 , 515, 7658-7661	2.2	12
350	3 Axis Capacitive Tactile Sensor and Readout Electronics 2006 ,		12
349	Reactive microencapsulation of carbon allotropes in polyamide shell-core structures and their transformation in hybrid composites with tailored electrical properties. <i>EXPRESS Polymer Letters</i> , 2016 , 10, 160-175	3.4	12

(2020-2020)

348	Multilayer passive radiative selective cooling coating based on Al/SiO2/SiNx/SiO2/TiO2/SiO2 prepared by dc magnetron sputtering. <i>Thin Solid Films</i> , 2020 , 694, 137736	2.2	12	
347	Surface Charge-Mediated Cell-Surface Interaction on Piezoelectric Materials. <i>ACS Applied Materials</i> & amp; Interfaces, 2020 , 12, 191-199	9.5	12	
346	Improved electrochemical performance of rare earth doped LiMn1.5-xNi0.5RExO4 based composite cathodes for lithium-ion batteries. <i>Composites Part B: Engineering</i> , 2018 , 139, 55-63	10	12	
345	Bombyx mori Silkworm Cocoon Separators for Lithium-Ion Batteries with Superior Safety and Sustainability. <i>Advanced Sustainable Systems</i> , 2018 , 2, 1800098	5.9	12	
344	Design and validation of a biomechanical bioreactor for cartilage tissue culture. <i>Biomechanics and Modeling in Mechanobiology</i> , 2016 , 15, 471-8	3.8	11	
343	Synthesis and improved electrochemical performance of LiMn2 IkGdxO4 based cathodes. <i>Solid State Ionics</i> , 2017 , 300, 18-25	3.3	11	
342	Chromium Speciation in Zirconium-Based Metal-Organic Frameworks for Environmental Remediation. <i>Chemistry - A European Journal</i> , 2020 , 26, 13861-13872	4.8	11	
341	UV curable nanocomposites with tailored dielectric response. <i>Polymer</i> , 2020 , 196, 122498	3.9	11	
340	Stretchable scintillator composites for indirect X-ray detectors. <i>Composites Part B: Engineering</i> , 2018 , 133, 226-231	10	11	
339	Effect of the active material type and battery geometry on the thermal behavior of lithium-ion batteries. <i>Energy</i> , 2019 , 185, 1250-1262	7.9	11	
338	Processing and characterization of Helastin electrospun membranes. <i>Applied Physics A: Materials Science and Processing</i> , 2014 , 115, 1291-1298	2.6	11	
337	Effect of cylindrical filler aggregation on the electrical conductivity of composites. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2014 , 378, 2985-2988	2.3	11	
336	X-ray scattering experiments on sputtered titanium dioxide coatings onto PVDF polymers for self-cleaning applications. <i>Journal of Applied Polymer Science</i> , 2011 , 119, 726-731	2.9	11	
335	Mn-doped ZnO nanocrystals embedded in Al2O3: structural and electrical properties. <i>Nanotechnology</i> , 2010 , 21, 505705	3.4	11	
334	X-Ray Image Detector Based on Light Guides and Scintillators. <i>IEEE Sensors Journal</i> , 2009 , 9, 1154-1159	4	11	
333	Poly(vinylidene fluoride-trifluoroethylene) (72/28) interconnected porous membranes obtained by crystallization from solution. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1312, 1		11	
332	Competing interactions and phase transitions in betaine arsenate-betaine phosphate (BAxBP1-x). <i>Ferroelectrics</i> , 1994 , 157, 269-274	0.6	11	
331	Ionic liquid based Fluoropolymer solid electrolytes for Lithium-ion batteries. <i>Sustainable Materials and Technologies</i> , 2020 , 25, e00176	5.3	11	

330	Lithium-ion battery separator membranes based on poly(L-lactic acid) biopolymer. <i>Materials Today Energy</i> , 2020 , 18, 100494	7	11
329	Poly(vinylidene) fluoride membranes coated by heparin/collagen layer-by-layer, smart biomimetic approaches for mesenchymal stem cell culture. <i>Materials Science and Engineering C</i> , 2020 , 117, 111281	8.3	11
328	Multifunctional magnetically responsive biocomposites based on genetically engineered silk-elastin-like protein. <i>Composites Part B: Engineering</i> , 2018 , 153, 413-419	10	11
327	Piezoresistive Polymer-Based Materials for Real-Time Assessment of the Stump/Socket Interface Pressure in Lower Limb Amputees. <i>IEEE Sensors Journal</i> , 2017 , 17, 2182-2190	4	10
326	Tuning Myoblast and Preosteoblast Cell Adhesion Site, Orientation, and Elongation through Electroactive Micropatterned Scaffolds <i>ACS Applied Bio Materials</i> , 2019 , 2, 1591-1602	4.1	10
325	Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl)imide/poly(vinylidene fluoride -co-hexafluoropropylene) for safer rechargeable lithium-ion batteries. <i>Sustainable Materials and Technologies</i> , 2019 , 21, e00104	5.3	10
324	Transformation of Escherichia coli JM109 using pUC19 by the Yoshida effect. <i>Journal of Microbiological Methods</i> , 2015 , 115, 1-5	2.8	10
323	Tuning electrical resistivity anisotropy of ZnO thin films for resistive sensor applications. <i>Thin Solid Films</i> , 2018 , 654, 93-99	2.2	10
322	Crystallization kinetics of poly(ethylene oxide) confined in semicrystalline poly(vinylidene) fluoride. Journal of Polymer Science, Part B: Polymer Physics, 2018 , 56, 588-597	2.6	10
321	Comparative study of solgel methods for the facile synthesis of tailored magnetic silica spheres. <i>Materials Research Express</i> , 2016 , 3, 075402	1.7	10
320	Increasing X-ray to visible transduction performance of Gd2O3:Eu3+PVDF composites by PPO/POPOP addition. <i>Composites Part B: Engineering</i> , 2016 , 91, 610-614	10	10
319	Synthesis and characterization of novel piezoelectric nitrile copolyimide films for high temperature sensor applications. <i>Smart Materials and Structures</i> , 2014 , 23, 105015	3.4	10
318	Effect of neutralization and cross-linking on the thermal degradation of chitosan electrospun membranes. <i>Journal of Thermal Analysis and Calorimetry</i> , 2014 , 117, 123-130	4.1	10
317	Review on X-ray Detectors Based on Scintillators and CMOS Technology. <i>Recent Patents on Electrical Engineering</i> , 2011 , 4, 16-41		10
316	Cohesive strength of nanocrystalline ZnO:Ga thin films deposited at room temperature. <i>Nanoscale Research Letters</i> , 2011 , 6, 309	5	10
315	N-doped photocatalytic titania thin films on active polymer substrates. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 1072-7	1.3	10
314	Comparative finite element analyses of piezoelectric ceramics and polymers at high frequency for underwater wireless communications. <i>Procedia Engineering</i> , 2010 , 5, 99-102		10
313	Strain dependence electrical resistance and cohesive strength of ITO thin films deposited on electroactive polymer. <i>Thin Solid Films</i> , 2010 , 518, 4525-4528	2.2	10

(2020-2001)

312	Simple versus cooperative relaxations in complex correlated systems. <i>Journal of Applied Physics</i> , 2001 , 89, 1844	2.5	10
311	Hydrolytic degradation and cytotoxicity of poly(lactic-co-glycolic acid)/multiwalled carbon nanotubes for bone regeneration. <i>Journal of Applied Polymer Science</i> , 2020 , 137, 48439	2.9	10
310	Magnetically active lithium-ion batteries towards battery performance improvement. <i>IScience</i> , 2021 , 24, 102691	6.1	10
309	Polymeric Electrospun Fibrous Dressings for Topical Co-delivery of Acyclovir and Omega-3 Fatty Acids. <i>Frontiers in Bioengineering and Biotechnology</i> , 2019 , 7, 390	5.8	10
308	Improved electrochemical performance of LiMn1.5M0.5O4 (M=Ni, Co, Cu) based cathodes for lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2021 , 853, 157208	5.7	10
307	Electric vehicles: To what extent are environmentally friendly and cost effective? ©Comparative study by european countries. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 151, 111548	16.2	10
306	Relationship between nano-architectured Ti1 © Cu x thin film and electrical resistivity for resistance temperature detectors. <i>Journal of Materials Science</i> , 2017 , 52, 4878-4885	4.3	9
305	Magnetic Bioreactor for Magneto-, Mechano- and Electroactive Tissue Engineering Strategies. <i>Sensors</i> , 2020 , 20,	3.8	9
304	Morphology Dependence Degradation of Electro- and Magnetoactive Poly(3-hydroxybutyrate-co-hydroxyvalerate) for Tissue Engineering Applications. <i>Polymers</i> , 2020 , 12,	4.5	9
303	Poly(styreneButene/ethyleneBtyrene): A New Polymer Binder for High-Performance Printable Lithium-Ion Battery Electrodes. <i>ACS Applied Energy Materials</i> , 2018 , 1, 3331-3341	6.1	9
302	Influence of different salts in poly(vinylidene fluoride-co-trifluoroethylene) electrolyte separator membranes for battery applications. <i>Journal of Electroanalytical Chemistry</i> , 2014 , 727, 125-134	4.1	9
301	Predicting the mechanical behavior of amorphous polymeric materials under strain through multi-scale simulation. <i>Applied Surface Science</i> , 2014 , 306, 37-46	6.7	9
300	Piezoresistive sensors for force mapping of hip-prostheses. <i>Sensors and Actuators A: Physical</i> , 2013 , 195, 133-138	3.9	9
299	Connecting free volume with shape memory properties in noncytotoxic gamma-irradiated polycyclooctene. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2015 , 53, 1080-1088	2.6	9
298	Piezoresistive polypropylenellarbon nanofiber composites as mechanical transducers. <i>Microsystem Technologies</i> , 2012 , 18, 591-597	1.7	9
297	Nanoparticle dispersion and electroactive phase content in polyvinylidene fluoride/Ni0.5Zn0.5Fe2O4 nanocomposites for magnetoelectric applications. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 6845-9	1.3	9
296	Raman and infrared study of the quasi-one-dimensional betaine arsenate-phosphate mixed-crystal system. <i>Physical Review B</i> , 2003 , 67,	3.3	9
295	Tailoring Electrospun Poly(l-lactic acid) Nanofibers as Substrates for Microfluidic Applications. <i>ACS Applied Materials & Discours (19</i> , 10, 60-69)	9.5	9

294	Magnetoelectric Polymer-Based Nanocomposites with Magnetically Controlled Antimicrobial Activity. <i>ACS Applied Bio Materials</i> , 2021 , 4, 559-570	4.1	9
293	Magnetic materials: a journey from finding north to an exciting printed future. <i>Materials Horizons</i> , 2021 , 8, 2654-2684	14.4	9
292	Development of bio-hybrid piezoresistive nanocomposites using silk-elastin protein copolymers. <i>Composites Science and Technology</i> , 2019 , 172, 134-142	8.6	8
291	Carbonaceous Filler Type and Content Dependence of the Physical-Chemical and Electromechanical Properties of Thermoplastic Elastomer Polymer Composites. <i>Materials</i> , 2019 , 12,	3.5	8
290	Structural, mechanical and piezoelectric properties of polycrystalline AlN films sputtered on titanium bottom electrodes. <i>Applied Surface Science</i> , 2015 , 354, 267-278	6.7	8
289	Cellulose Nanocrystal and Water-Soluble Cellulose Derivative Based Electromechanical Bending Actuators. <i>Materials</i> , 2020 , 13,	3.5	8
288	Plasma-treated Bombyx mori cocoon separators for high-performance and sustainable lithium-ion batteries. <i>Materials Today Sustainability</i> , 2020 , 9, 100041	5	8
287	Effect of Ionic Liquid Content on the Crystallization Kinetics and Morphology of Semicrystalline Poly(vinylidene Fluoride)/Ionic Liquid Blends. <i>Crystal Growth and Design</i> , 2020 , 20, 4967-4979	3.5	8
286	Tailoring Electrical and Mechanical Properties of All-Natural Polymer Composites for Environmentally Friendlier Electronics. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 1448-1457	4.3	8
285	Thermal degradation of Pb(Zr0.53Ti0.47)O3/poly(vinylidene fluoride) composites as a function of ceramic grain size and concentration. <i>Journal of Thermal Analysis and Calorimetry</i> , 2013 , 114, 757-763	4.1	8
284	Suitability of PLLA as Piezoelectric Substrates for Tissue Engineering Evidenced by Microscopy Techniques. <i>Microscopy and Microanalysis</i> , 2012 , 18, 63-64	0.5	8
283	Preparation of Magnetoelectric Composites by Nucleation of the Electroactive Phase of Poly(vinylidene fluoride) by NiZnFe2O4 Nanoparticles. <i>Sensor Letters</i> , 2013 , 11, 110-114	0.9	8
282	Touchscreen based on acoustic pulse recognition with piezoelectric polymer sensors 2010,		8
281	Phase behaviour and quasi-one dimensionality of betaine arsenate/phosphate mixed crystals. <i>Journal of Physics Condensed Matter</i> , 1996 , 8, 4617-4629	1.8	8
280	Molecular Orientation and Degree of Crystallinity of Piezoelectric Poly(Vinylidene Fluoride) Films Exclusively in the IPhase. <i>Ferroelectrics</i> , 2008 , 370, 29-35	0.6	8
279	Temperature Calibration in Dielectric Measurements. <i>Magyar Apr</i> lad Kalembyek, 2001 , 65, 37-49	Ο	8
278	Antiferroelectric ADP doping in ferroelectric TGS crystals. <i>Materials Letters</i> , 2002 , 54, 329-336	3.3	8
277	Magnetorheological Elastomer-Based Materials and Devices: State of the Art and Future Perspectives. <i>Advanced Engineering Materials</i> , 2021 , 23, 2100240	3.5	8

276	Magnetic Nanoparticles for Biomedical Applications: From the Soul of the Earth to the Deep History of Ourselves <i>ACS Applied Bio Materials</i> , 2021 , 4, 5839-5870	4.1	8
275	Finite-Size Effects in the Absorption Spectra of a Single-Wall Carbon Nanotube. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 18268-18274	3.8	8
274	Magnetic Proximity Sensor Based on Magnetoelectric Composites and Printed Coils. <i>Materials</i> , 2020 , 13,	3.5	8
273	Highly effective clean-up of magnetic nanoparticles using microfluidic technology. <i>Sensors and Actuators B: Chemical</i> , 2018 , 255, 2384-2391	8.5	8
272	Silver-Doped Cadmium Selenide/Graphene Oxide-Filled Cellulose Acetate Nanocomposites for Photocatalytic Degradation of Malachite Green toward Wastewater Treatment. <i>ACS Omega</i> , 2021 , 6, 23129-23138	3.9	8
271	. IEEE Transactions on Magnetics, 2021 , 57, 1-57	2	8
270	A New Approach for the Fabrication of Cytocompatible PLLA-Magnetite Nanoparticle Composite Scaffolds. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	7
269	Dielectric relaxation and ferromagnetic resonance in magnetoelectric (Polyvinylidene-fluoride)/ferrite composites. <i>Journal of Polymer Research</i> , 2015 , 22, 1	2.7	7
268	Ion Exchange Dependent Electroactive Phase Content and Electrical Properties of Poly(vinylidene fluoride)/Na(M)Y Composites. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 5211-5217	3.8	7
267	Silica nanoparticles surface charge modulation of the electroactive phase content and physical-chemical properties of poly(vinylidene fluoride) nanocomposites. <i>Composites Part B: Engineering</i> , 2020 , 185, 107786	10	7
266	Evaluation of the Physicochemical Properties and Active Response of Piezoelectric Poly(vinylidene fluoride-co-trifluoroethylene) as a Function of Its Microstructure. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 11433-11441	3.8	7
265	MC3T3-E1 Cell Response to Ti1-xAgx and Ag-TiNx Electrodes Deposited on Piezoelectric Poly(vinylidene fluoride) Substrates for Sensor Applications. <i>ACS Applied Materials & Description</i> (2016, 8, 4199-207)	9.5	7
264	Influence of solvent properties on the electrical response of poly(vinylidene fluoride)/NaY composites. <i>Journal of Polymer Research</i> , 2013 , 20, 1	2.7	7
263	Mild hydrothermal synthesis and crystal morphology control of LiFePO4 by lithium nitrate. <i>Nano Structures Nano Objects</i> , 2017 , 11, 82-87	5.6	7
262	Crystal Morphology Control of Synthetic Giniite by Alkaline Cations and pH Variations. <i>Crystal Growth and Design</i> , 2017 , 17, 4710-4714	3.5	7
261	Improving the binding capacity of Ni2+ decorated porous magnetic silica spheres for histidine-rich protein separation. <i>Colloids and Surfaces B: Biointerfaces</i> , 2013 , 101, 370-5	6	7
260	Pixel Readout Circuit for X-Ray Imagers. <i>IEEE Sensors Journal</i> , 2010 , 10, 1740-1745	4	7
259	Piezoresistive response of Pluronic-wrapped single-wall carbon nanotubellpoxy composites. Journal of Intelligent Material Systems and Structures, 2012, 23, 909-917	2.3	7

258	Fabrication of poly(lactic acid)-poly(ethylene oxide) electrospun membranes with controlled micro to nanofiber sizes. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 6746-53	1.3	7
257	Piezoelectric and Optical Response of Uniaxially Stretched (VDF/TrFE) (75/25) Copolymer Films. <i>Materials Science Forum</i> , 2006 , 514-516, 945-950	0.4	7
256	Electrical and Microstructural Changes of EPVDF under Uniaxial Stress Studied by Scanning Force Microscopy. <i>Materials Science Forum</i> , 2006 , 514-516, 915-919	0.4	7
255	X-ray detector based on a bulk micromachined photodiode combined with a scintillating crystal. <i>Journal of Micromechanics and Microengineering</i> , 2003 , 13, S45-S50	2	7
254	Triboelectric Energy Harvesting Response of Different Polymer-Based Materials. <i>Materials</i> , 2020 , 13,	3.5	7
253	Optically transparent silk fibroin/silver nanowire composites for piezoresistive sensing and object recognitions. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 13053-13062	7.1	7
252	All printed soft actuators based on ionic liquid/polymer hybrid materials. <i>Applied Materials Today</i> , 2021 , 22, 100928	6.6	7
251	Recent Advances on Materials for Lithium-Ion Batteries. <i>Energies</i> , 2021 , 14, 3145	3.1	7
250	Study on the surface properties of colored talc filler (CTF) and mechanical performance of CTF/acrylonitrile-butadiene-styrene composite. <i>Journal of Alloys and Compounds</i> , 2016 , 676, 513-520	5.7	7
249	Lab-on-a-chip technology and microfluidics 2019 , 3-36		7
249 248	Lab-on-a-chip technology and microfluidics 2019 , 3-36 Theoretical design of high-performance polymer-based magnetoelectric of fibrilar structures. <i>Composites Science and Technology</i> , 2018 , 155, 126-136	8.6	7
	Theoretical design of high-performance polymer-based magnetoelectric of fibrilar structures.	8.6	
248	Theoretical design of high-performance polymer-based magnetoelectric of fibrilar structures. Composites Science and Technology, 2018, 155, 126-136 Pectin-cellulose hydrogel, silk fibroin and magnesium hydroxide nanoparticles hybrid nanocomposites for biomedical applications. International Journal of Biological Macromolecules,		7
248	Theoretical design of high-performance polymer-based magnetoelectric of fibrilar structures. <i>Composites Science and Technology</i> , 2018 , 155, 126-136 Pectin-cellulose hydrogel, silk fibroin and magnesium hydroxide nanoparticles hybrid nanocomposites for biomedical applications. <i>International Journal of Biological Macromolecules</i> , 2021 , 192, 7-15 The effect of increasing Si content in the absorber layers (CrAlSiNx/CrAlSiOyNx) of solar selective	7.9	7
248 247 246	Theoretical design of high-performance polymer-based magnetoelectric of fibrilar structures. <i>Composites Science and Technology</i> , 2018 , 155, 126-136 Pectin-cellulose hydrogel, silk fibroin and magnesium hydroxide nanoparticles hybrid nanocomposites for biomedical applications. <i>International Journal of Biological Macromolecules</i> , 2021 , 192, 7-15 The effect of increasing Si content in the absorber layers (CrAlSiNx/CrAlSiOyNx) of solar selective absorbers upon their selectivity and thermal stability. <i>Applied Surface Science</i> , 2019 , 481, 1096-1102 Effect of the acoustic impedance in ultrasonic emitter transducers using digital modulations. <i>Ocean</i>	7.9 6. ₇	7 7 6
248 247 246 245	Theoretical design of high-performance polymer-based magnetoelectric of fibrilar structures. <i>Composites Science and Technology</i> , 2018 , 155, 126-136 Pectin-cellulose hydrogel, silk fibroin and magnesium hydroxide nanoparticles hybrid nanocomposites for biomedical applications. <i>International Journal of Biological Macromolecules</i> , 2021 , 192, 7-15 The effect of increasing Si content in the absorber layers (CrAlSiNx/CrAlSiOyNx) of solar selective absorbers upon their selectivity and thermal stability. <i>Applied Surface Science</i> , 2019 , 481, 1096-1102 Effect of the acoustic impedance in ultrasonic emitter transducers using digital modulations. <i>Ocean Engineering</i> , 2015 , 100, 107-116 The role of CNC surface modification on the structural, thermal and electrical properties of	7.9 6.7 3.9	7 7 6
248 247 246 245	Theoretical design of high-performance polymer-based magnetoelectric of fibrilar structures. <i>Composites Science and Technology</i> , 2018 , 155, 126-136 Pectin-cellulose hydrogel, silk fibroin and magnesium hydroxide nanoparticles hybrid nanocomposites for biomedical applications. <i>International Journal of Biological Macromolecules</i> , 2021 , 192, 7-15 The effect of increasing Si content in the absorber layers (CrAlSiNx/CrAlSiOyNx) of solar selective absorbers upon their selectivity and thermal stability. <i>Applied Surface Science</i> , 2019 , 481, 1096-1102 Effect of the acoustic impedance in ultrasonic emitter transducers using digital modulations. <i>Ocean Engineering</i> , 2015 , 100, 107-116 The role of CNC surface modification on the structural, thermal and electrical properties of poly(vinylidene fluoride) nanocomposites. <i>Cellulose</i> , 2020 , 27, 3821-3834 Marked Object Recognition Multitouch Screen Printed Touchpad for Interactive Applications.	7.9 6.7 3.9 5.5	77666

(2013-2015)

240	Induced Magnetoelectric Effect Driven by Magnetization in BaFe12O19- P(VDF-TrFE) Composites. <i>IEEE Transactions on Magnetics</i> , 2015 , 51, 1-4	2	6
239	Temperature dependence of the electrical conductivity of vapor grown carbon nanofiber/epoxy composites with different filler dispersion levels. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2012 , 376, 3290-3294	2.3	6
238	Ultra-sensitive shape sensor test structures based on piezoresistive doped nanocrystalline silicon. <i>Vacuum</i> , 2009 , 83, 1279-1282	3.7	6
237	Ultrasonic Transducer Based on EPVDF for Fluidic Microagitation in a Lab-on-a-Chip Device. <i>Advances in Science and Technology</i> , 2008 , 57, 99-104	0.1	6
236	Separation of the Pyro- and Piezoelectric Response of Electroactive Polymers for Sensor Applications. <i>Materials Science Forum</i> , 2006 , 514-516, 202-206	0.4	6
235	3 Axis Capacitive Tactile Sensor 2005 ,		6
234	Cooperative and Local Relaxations in Complex Systems: Polymers and Crystals. <i>Ferroelectrics</i> , 2002 , 270, 271-276	0.6	6
233	Selective Antimicrobial Performance of Biosynthesized Silver Nanoparticles by Horsetail Extract Against E. coli. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2020 , 30, 2598-2607	3.2	6
232	Design of Ionic-Liquid-Based Hybrid Polymer Materials with a Magnetoactive and Electroactive Multifunctional Response. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 42089-42098	9.5	6
231	Overview on thermoactive materials, simulations and applications. <i>Journal of Materials Science</i> , 2020 , 55, 925-946	4.3	6
230	MetalBrganic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes. <i>Materials Advances</i> , 2021 , 2, 3790-3805	3.3	6
229	Highly sensitive transparent piezoionic materials and their applicability as printable pressure sensors. <i>Composites Science and Technology</i> , 2021 , 214, 108976	8.6	6
228	Electroactive Phase, Enhanced Thermal and Mechanical Properties and High Ionic Conductivity Response of Poly (Vinylidene Fluoride)/Cellulose Nanocrystal Hybrid Nanocomposites. <i>Materials</i> , 2020 , 13,	3.5	5
227	Reusable Photocatalytic Optical Fibers for Underground, Deep-Sea, and Turbid Water Remediation. <i>Global Challenges</i> , 2018 , 2, 1700124	4.3	5
226	Polymer Electrolytes for Printed Batteries 2018 , 80-111		5
225	3.9 Piezoelectric Energy Production 2018 , 380-415		5
224	Bi2Te3-Sb2Te3 on polymeric substrate for X-ray detectors based on the seebeck effect. <i>Microsystem Technologies</i> , 2012 , 18, 1-8	1.7	5
223	Extrusion of poly(vinylidene fluoride) recycled filaments: Effect of the processing cycles on the degree of crystallinity and electroactive phase content. <i>Polymer Testing</i> , 2013 , 32, 1041-1044	4.5	5

222	Metamorphic biomaterials 2017 , 69-99		5
221	Large Area Microfabrication of Electroactive Polymeric Structures Based on Near-Field Electrospinning. <i>Procedia Engineering</i> , 2011 , 25, 888-891		5
220	Functionally graded electroactive Poly(vinylidene fluoride) polymers. <i>International Journal of Materials and Product Technology</i> , 2010 , 39, 178	1	5
219	Effect of Poling on the Mechanical Properties of Poly(Vinylidene Fluoride). <i>Materials Science Forum</i> , 2006 , 514-516, 951-955	0.4	5
218	Anomalous and normal protonic conductivity in Cs1II(NH4)xH2PO4, Cs1II(ND4)xD2PO4, and K1II(NH4)xH2PO4. <i>Solid State Ionics</i> , 1999 , 125, 147-157	3.3	5
217	Silver Nanoparticles for Conductive Inks: From Synthesis and Ink Formulation to Their Use in Printing Technologies. <i>Metals</i> , 2022 , 12, 234	2.3	5
216	Reusable Ag@TiO-Based Photocatalytic Nanocomposite Membranes for Solar Degradation of Contaminants of Emerging Concern. <i>Polymers</i> , 2021 , 13,	4.5	5
215	Effect of bacterial nanocellulose binding on the bactericidal activity of bovine lactoferrin. <i>Heliyon</i> , 2020 , 6, e04372	3.6	5
214	Can photocatalytic and magnetic nanoparticles be a threat to aquatic detrital food webs?. <i>Science of the Total Environment</i> , 2021 , 769, 144576	10.2	5
213	Mechanical fatigue performance of PCL-chondroprogenitor constructs after cell culture under bioreactor mechanical stimulus. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2016 , 104, 330-8	3.5	5
212	All-Printed Piezoresistive Sensor Matrix with Organic Thin-Film Transistors as a Switch for Crosstalk Reduction. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 1470-1477	4	5
211	Optimized Printed Cathode Electrodes for High Performance Batteries. <i>Energy Technology</i> , 2021 , 9, 200	098905	5
210	Optimized Magnetodielectric Coupling on High-Temperature Polymer-Based Nanocomposites. Journal of Physical Chemistry C, 2018 , 122, 1821-1827	3.8	5
209	Layer-by-layer fabrication of highly transparent polymer based piezoelectric transducers. <i>Materials Research Express</i> , 2018 , 5, 065313	1.7	5
208	Eco-friendly and cost-efficient inks for screen-printed fabrication of copper indium gallium diselenide photoabsorber thin films. <i>Journal of Colloid and Interface Science</i> , 2021 , 598, 388-397	9.3	5
207	Nanostructured Ti1-xCux thin films with tailored electrical and morphological anisotropy. <i>Thin Solid Films</i> , 2019 , 672, 47-54	2.2	4
206	Development of Poly(l-Lactic Acid)-Based Bending Actuators. <i>Polymers</i> , 2020 , 12,	4.5	4
205	Silk Fibroin Based Magnetic Nanocomposites for Actuator Applications. <i>Advanced Engineering Materials</i> , 2020 , 22, 2000111	3.5	4

(2020-2020)

204	Combining cobalt ferrite and graphite with cellulose nanocrystals for magnetically active and electrically conducting mesoporous nanohybrids. <i>Carbohydrate Polymers</i> , 2020 , 236, 116001	10.3	4
203	Freeze-extraction microporous electroactive supports for cell culture. <i>European Polymer Journal</i> , 2019 , 119, 531-540	5.2	4
202	Ceramic nanoparticles and carbon nanotubes reinforced thermoplastic materials for piezocapacitive sensing applications. <i>Composites Science and Technology</i> , 2019 , 183, 107804	8.6	4
201	High performance piezoresistive response of nanostructured ZnO/Ag thin films for pressure sensing applications. <i>Thin Solid Films</i> , 2019 , 691, 137587	2.2	4
200	Magnetoelectric Composites for Bionics Applications 2017 , 171-195		4
199	Poly(vinylidene fluoride)-Based Magnetoelectric Polymer Nanocomposite Films 2017 , 87-113		4
198	Multifunctional Braided Composite Rods for Civil Engineering Applications. <i>Advanced Materials Research</i> , 2010 , 123-125, 149-152	0.5	4
197	CMOS X-ray Image Sensor Array 2007 ,		4
196	3-D Modeling of Scintillator-Based X-ray Detectors. <i>IEEE Sensors Journal</i> , 2006 , 6, 1236-1242	4	4
195	Comparison between bulk micromachined and CMOS X-ray detectors. <i>Sensors and Actuators A: Physical</i> , 2004 , 115, 215-220	3.9	4
194	Chain Reorientation in EPVDF Films Upon Transverse Mechanical Deformation Studied by SEM and Dielectric Relaxation. <i>Ferroelectrics</i> , 2003 , 294, 73-83	0.6	4
193	Re-crystallization of MNA under a strong dc electric field. <i>Solid State Sciences</i> , 2001 , 3, 733-740	3.4	4
192	Phase Diagram and Dielectric Properties of Mixed Cs 1🛭 (NH 4) X H 2 PO 4 Crystals. <i>Ferroelectrics</i> , 2002 , 272, 225-230	0.6	4
191	The Dynamics of the Glass Transition in a Semicrystalline PET Studied by Mechanical and Dielectric Spectroscopic Methods. <i>Defect and Diffusion Forum</i> , 2002 , 206-207, 131-134	0.7	4
190	Review of experimental and theoretical results for the betaine arsenate/phosphate mixed crystals system. <i>Ferroelectrics</i> , 1999 , 226, 107-124	0.6	4
189	Printed multifunctional magnetically activated energy harvester with sensing capabilities. <i>Nano Energy</i> , 2022 , 94, 106885	17.1	4
188	Tailoring electroactive poly(vinylidene fluoride-co-trifluoroethylene) microspheres by a nanoprecipitation method. <i>Materials Letters</i> , 2020 , 261, 127018	3.3	4
187	Water-based 2D printing of magnetically active cellulose derivative nanocomposites. <i>Carbohydrate Polymers</i> , 2020 , 233, 115855	10.3	4

186	Functional Piezoresistive Polymer-Composites Based on Polycarbonate and Polylactic Acid for Deformation Sensing Applications. <i>Macromolecular Materials and Engineering</i> , 2020 , 305, 2000379	3.9	4
185	Chitin/Metal-Organic Framework Composites as Wide-Range Adsorbent. <i>ChemSusChem</i> , 2021 , 14, 2892	2-289901	4
184	All-Printed Smart Label with Integrated Humidity Sensors and Power Supply. <i>Advanced Engineering Materials</i> , 2021 , 23, 2001229	3.5	4
183	Overview on lightweight, multifunctional materials 2021 , 1-24		4
182	Modulation of the Bifunctional CrVI to CrIII Photoreduction and Adsorption Capacity in ZrIV and TiIV Benchmark Metal-Organic Frameworks. <i>Catalysts</i> , 2021 , 11, 51	4	4
181	Free-standing intrinsically conducting polymer membranes based on cellulose and poly(vinylidene fluoride) for energy storage applications. <i>European Polymer Journal</i> , 2021 , 144, 110240	5.2	4
180	High dielectric constant poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) for capacitive pressure and bending sensors. <i>Polymer</i> , 2021 , 214, 123349	3.9	4
179	A new approach for preparation of metal-containing polyamide/carbon textile laminate composites with tunable electrical conductivity. <i>Journal of Materials Science</i> , 2018 , 53, 11444-11459	4.3	4
178	Environmentally Friendly Graphene-Based Conductive Inks for Multitouch Capacitive Sensing Surfaces. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100578	4.6	4
177	Multifunctional wax based conductive and piezoresistive nanocomposites for sensing applications. <i>Composites Science and Technology</i> , 2021 , 213, 108892	8.6	4
176	3D printable self-healing hyaluronic acid/chitosan polycomplex hydrogels with drug release capability. <i>International Journal of Biological Macromolecules</i> , 2021 , 188, 820-832	7.9	4
175	Lithium bis(trifluoromethanesulfonyl)imide blended in polyurethane acrylate photocurable solid polymer electrolytes for lithium-ion batteries. <i>Journal of Energy Chemistry</i> , 2021 , 62, 485-496	12	4
174	Recent Progress in Graphene- and Related Carbon-Nanomaterial-based Electrochemical Biosensors for Early Disease Detection ACS Biomaterials Science and Engineering, 2022,	5.5	4
173	Modulation of the magnetoimpedance effect of ZnO:Ag/NiFe heterostructures by thermal annealing. <i>Journal of Materials Science</i> , 2020 , 55, 5961-5968	4.3	3
172	Water based scintillator ink for printed X-ray radiation detectors. <i>Polymer Testing</i> , 2018 , 69, 26-31	4.5	3
171	Micro- and nanostructured piezoelectric polymers. Frontiers of Nanoscience, 2019, 35-65	0.7	3
170	Ag-TiNx electrodes deposited on piezoelectric poly(vinylidene fluoride) for biomedical sensor applications. <i>Sensors and Actuators A: Physical</i> , 2015 , 234, 1-8	3.9	3
169	Energy Harvesting 2017 , 197-224		3

(2021-2015)

168	Towards Green Smart Materials for Force and Strain Sensors: The Case of Polyaniline. <i>Key Engineering Materials</i> , 2015 , 644, 157-162	0.4	3	
167	Comparative analyses of the electrical properties and dispersion level of VGCNF and MWCNT: Epoxy composites. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2012 , 50, 1253-1261	2.6	3	
166	Room Temperature Magnetic Response of Sputter Deposited TbDyFe Films as a Function of the Deposition Parameters. <i>Journal of Nano Research</i> , 2012 , 18-19, 235-239	1	3	
165	Critical behavior of a three-dimensional hardcore-cylinder composite system. <i>Physical Review E</i> , 2012 , 85, 021115	2.4	3	
164	A numerical study on the heat transfer generated by a piezoelectric transducer in a microfluidic system. <i>Journal of Physics: Conference Series</i> , 2012 , 395, 012091	0.3	3	
163	Piezoelectric EPVDF polymer films as fluid acoustic microagitator 2008,		3	
162	A Tunable Fabry-Perot Optical Filter for Application in Biochemical Analysis of Human's Fluids 2006 ,		3	
161	Behaviour of the Ferroelectric Phase Transition of P(VDF/TrFE) (75/25) with Increasing Deformation. <i>Ferroelectrics</i> , 2004 , 304, 23-26	0.6	3	
160	Random fields versus random bond effects in betaine arsenate/phosphate mixed crystals. <i>Ferroelectrics</i> , 1996 , 176, 73-90	0.6	3	
159	pH-Induced 3D Printable Chitosan Hydrogels for Soft Actuation <i>Polymers</i> , 2022 , 14,	4.5	3	
158	Electroactive poly(vinylidene fluoride) electrospun fiber mats coated with polyaniline and polypyrrole for tissue regeneration applications. <i>Reactive and Functional Polymers</i> , 2022 , 170, 105118	4.6	3	
157	Electrode fabrication process and its influence in lithium-ion battery performance: State of the art and future trends. <i>Electrochemistry Communications</i> , 2022 , 135, 107210	5.1	3	
156	Surface free energy and mechanical performance of LDPE/CBF composites containing toxic-metal free filler. <i>International Journal of Adhesion and Adhesives</i> , 2017 , 77, 58-62	3.4	3	
155	Patterned Piezoelectric Scaffolds for Osteogenic Differentiation. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	3	
154	Dielectric relaxation dynamics in poly(vinylidene fluoride)/Pb(Zr0\(\bar{D}\)3Ti0.47)O3 composites. <i>Polymer</i> , 2020 , 204, 122811	3.9	3	
153	Biodegradable Hydrogels Loaded with Magnetically Responsive Microspheres as 2D and 3D Scaffolds. <i>Nanomaterials</i> , 2020 , 10,	5.4	3	
152	Large-Scale Synthesis of Semiconducting Cu(In,Ga)Se Nanoparticles for Screen Printing Application. <i>Nanomaterials</i> , 2021 , 11,	5.4	3	
151	Fluorinated Polymer Membranes as Advanced Substrates for Portable Analytical Systems and Their Proof of Concept for Colorimetric Bioassays. <i>ACS Applied Materials & Description (Concept for Colorimetric Bioassays)</i> 13, 18065-1	8 <i>6</i> 75	3	

150	Porous Composite Bifunctional Membranes for Lithium-Ion Battery Separator and Photocatalytic Degradation Applications: Toward Multifunctionality for Circular Economy. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2100046	1.6	3
149	Cytocompatible scaffolds of poly(L-lactide)/reduced graphene oxide for tissue engineering. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2021 , 32, 1406-1419	3.5	3
148	Polycarbonate based multifunctional self-sensing 2D and 3D printed structures for aeronautic applications. <i>Smart Materials and Structures</i> , 2021 , 30, 085032	3.4	3
147	Hydrophobic/hydrophilic P(VDF-TrFE)/PHEA polymer blend membranes. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2016 , 54, 672-679	2.6	3
146	3D Cytocompatible Composites of PCL/magnetite. <i>Materials</i> , 2019 , 12,	3.5	3
145	Short-range magnetic behavior in manganites La0.93K0.07Mn1- x Cu x O3 (0.0? x? 0.09) above the Curie temperature. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 175001	3	3
144	Recent advances on battery separators based on poly(vinylidene fluoride) and its copolymers for lithium-ion battery applications. <i>Current Opinion in Electrochemistry</i> , 2021 , 29, 100752	7.2	3
143	Laser-induced highly oriented pyrolytic graphite for high-performance screen-printed electrodes. <i>Materials Advances</i> , 2021 , 2, 5912-5921	3.3	3
142	Metal organic framework modified poly(vinylidene fluoride-co-hexafluoropropylene) separator membranes to improve lithium-ion battery capacity fading. <i>Chemical Engineering Journal</i> , 2022 , 443, 136329	14.7	3
141	Solid Magnetoliposomes as Multi-Stimuli-Responsive Systems for Controlled Release of Doxorubicin: Assessment of Lipid Formulations. <i>Biomedicines</i> , 2022 , 10, 1207	4.8	3
140	Electroactive poly(vinylidene fluoride)-based materials: recent progress, challenges, and opportunities 2020 , 1-43		2
139	Applications of Printed Batteries 2018 , 144-184		2
138	Industrial Perspective on Printed Batteries 2018 , 185-229		2
137	The Influence of Slurry Rheology on Lithium-ion Electrode Processing 2018 , 63-79		2
136	Multidimensional Biomechanics Approaches Though Electrically and Magnetically Active Microenvironments 2019 , 253-267		2
135	Energy Harvesting 2017 , 225-253		2
134	Electrospun Polymeric Smart Materials for Tissue Engineering Applications 2017, 251-282		2
133	Degradation studies of transparent conductive electrodes on electroactive poly(vinylidene fluoride) for uric acid measurements. <i>Science and Technology of Advanced Materials</i> , 2010 , 11, 045006	7.1	2

(2021-2009)

132	Wearable brain cap with contactless electroencephalogram measurement for brain-computer interface applications 2009 ,		2
131	Biological microdevice with fluidic acoustic streaming for measuring uric acid in human saliva. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference, 2009, 2009, 5879-82	0.9	2
130	Sigma-delta A/D converter for CMOS image sensors 2009 ,		2
129	Influence of the Crystallization Kinetics on the Microstructural Properties of EPVDF. <i>Materials Science Forum</i> , 2008 , 587-588, 534-537	0.4	2
128	Electrical and Microstructural Changes of EPVDF under Different Processing Conditions by Scanning Force Microscopy. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 949, 1		2
127	Electrical Response of EPVDF in a Constant Uniaxial Strain Rate Deformation. <i>Ferroelectrics</i> , 2004 , 304, 43-46	0.6	2
126	Polarization behavior in systems with competing ferroelectric and antiferroelectric interactions. <i>Physica Status Solidi (B): Basic Research</i> , 2005 , 242, 1141-1148	1.3	2
125	Dielectric relaxation in pure and irradiated TGSP crystals. <i>Materials Letters</i> , 2000 , 44, 237-241	3.3	2
124	Dielectric behavior of betaine arsenate/phosphate mixed crystals (BAxBP1🛭) in an electric bias field. <i>Ferroelectrics</i> , 1996 , 184, 281-284	0.6	2
123	Magnetic graphene oxide-lignin nanobiocomposite: a novel, eco-friendly and stable nanostructure suitable for hyperthermia in cancer therapy <i>RSC Advances</i> , 2022 , 12, 3593-3601	3.7	2
122	Influence of glucose, sucrose, and dextran coatings on the stability and toxicity of silver nanoparticles. <i>International Journal of Biological Macromolecules</i> , 2021 , 194, 461-461	7.9	2
121	Design and fabrication of printed human skin model equivalent circuit: A tool for testing biomedical electrodes without human trials. <i>Advanced Engineering Materials</i> ,	3.5	2
120	Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene): A New Binder for Conventional and Printable Lithium-Ion Batteries. <i>ACS Applied Energy Materials</i> ,	6.1	2
119	Reusable Nanocomposite Membranes for Highly Efficient Arsenite and Arsenate Dual Removal from Water. <i>Advanced Materials Interfaces</i> ,2101419	4.6	2
118	Green synthesis of molybdenum-based nanoparticles and their applications in energy conversion and storage: A review. <i>International Journal of Hydrogen Energy</i> , 2021 ,	6.7	2
117	Multifunctional hybrid membranes for photocatalytic and adsorptive removal of water contaminants of emerging concern <i>Chemosphere</i> , 2022 , 293, 133548	8.4	2
116	Temperature and frequency dependence of the dielectric and piezoelectric response of P(VDFIIrFE)/CoFe2O4 magnetoelectric composites. <i>Lithuanian Journal of Physics</i> , 2017 , 57,	1.1	2
115	High-Performance Room Temperature Lithium-Ion Battery Solid Polymer Electrolytes Based on Poly(vinylidene fluoridehexafluoropropylene) Combining Ionic Liquid and Zeolite. <i>ACS Applied Materials & </i>	9.5	2

114	Unraveling the role of magnetic anisotropy on the thermoelectric response: a theoretical and experimental approach. <i>Journal Physics D: Applied Physics</i> , 2022 , 55, 025001	3	2
113	Laser-activated screen-printed carbon electrodes for enhanced dopamine determination in the presence of ascorbic and uric acid. <i>Electrochimica Acta</i> , 2021 , 399, 139374	6.7	2
112	Environmentally Friendly Conductive Screen-Printable Inks Based on N-Doped Graphene and Polyvinylpyrrolidone. <i>Advanced Engineering Materials</i> ,2101258	3.5	2
111	Antimicrobial and Antibiofilm Properties of Fluorinated Polymers with Embedded Functionalized Nanodiamonds. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 5014-5024	4.3	2
110	Magnetic materials for magnetoelectric coupling: An unexpected journey. <i>Handbook of Magnetic Materials</i> , 2020 , 29, 57-110	1.3	2
109	Tuning Properties of Cerium Dioxide Nanoparticles by Surface Modification with Catecholate-type of Ligands. <i>Langmuir</i> , 2020 , 36, 9738-9746	4	2
108	Theoretical optimization of magnetoelectric multilayer laminates. <i>Composites Science and Technology</i> , 2021 , 204, 108642	8.6	2
107	Magnesium aminoclays as plasmid delivery agents for non-competent Escherichia coli JM109 transformation. <i>Applied Clay Science</i> , 2021 , 204, 106010	5.2	2
106	Comparative Assessment of Ionic Liquid-Based Soft Actuators Prepared by Film Casting Versus Direct Ink Writing. <i>Advanced Engineering Materials</i> , 2021 , 23, 2100411	3.5	2
105	Fabrication, Characterization and Implementation of Thermo Resistive TiCu(N,O) Thin Films in a Polymer Injection Mold. <i>Materials</i> , 2020 , 13,	3.5	2
104	Piezoelectric Polymer Composites for Sensors and Actuators 2021 , 473-486		2
103	Photocurable magnetic materials with tailored functional properties. <i>Composites Part C: Open Access</i> , 2021 , 5, 100143	1.6	2
102	Exploring electroactive microenvironments in polymer-based nanocomposites to sensitize bacterial cells to low-dose embedded silver nanoparticles. <i>Acta Biomaterialia</i> , 2021 ,	10.8	2
101	Broadband dielectric response of silk Fibroin/BaTiO3 composites: Influence of nanoparticle size and concentration. <i>Composites Science and Technology</i> , 2021 , 213, 108927	8.6	2
100	Magnetically active nanocomposites based on biodegradable polylactide, polycaprolactone, polybutylene succinate and polybutylene adipate terephthalate. <i>Polymer</i> , 2022 , 124804	3.9	2
99	Toward Sustainable Solid Polymer Electrolytes for Lithium-Ion Batteries ACS Omega, 2022, 7, 14457-14	146/1	2
98	Poly(lactic-co-glycolide) based biodegradable electrically and magnetically active microenvironments for tissue regeneration applications. <i>European Polymer Journal</i> , 2022 , 111197	5.2	2
97	Tailoring physicochemical properties of collagen-based composites with ionic liquids and wool for advanced applications. <i>Polymer</i> , 2022 , 252, 124943	3.9	2

(2000-2017)

96	Capture and separation of l-histidine through optimized zinc-decorated magnetic silica spheres. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 157, 48-55	6	1
95	Printed Batteries 2018 , 1-20		1
94	Strain analysis on Ti1 IkAgx and AgIIiNx electrodes deposited on polymer based sensors. <i>Thin Solid Films</i> , 2016 , 604, 55-62	2.2	1
93	Polymer-Based Separators for Lithium-Ion Batteries 2019 , 429-465		1
92	Sharing of classical and quantum correlations via XY interaction. <i>Annals of Physics</i> , 2014 , 348, 23-31	2.5	1
91	Design of Magnetostrictive Nanoparticles for Magnetoelectric Composites 2017 , 125-151		1
90	On the origin of the electrical response of vapor grown carbon nanofiber + epoxy composites. <i>E-Polymers</i> , 2012 , 12,	2.7	1
89	Microporous Poly(Vinylidene Fluoride Trifluoroethylene)/Zeolite Membranes for Lithium-Ion Battery Applications. <i>Procedia Engineering</i> , 2012 , 44, 983-984		1
88	Heating of samples by acoustic microagitation for improving reaction of biological fluids 2010,		1
87	Design and fabrication of piezoelectric microactuators based on Epoly (vinylidene fluoride) films for microfluidic applications. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference,	0.9	1
86	Organic functionalization of carbon nanofibers for composite applications. <i>Polymer Composites</i> , 2009 , 31, NA-NA	3	1
85	Piezoelectric micropump for lab-on-a-chip applications 2009,		1
84	On the Dispersion of Carbon Nanofibre-Based Suspensions in Simple Shear: An Experimental Study. <i>Materials Science Forum</i> , 2008 , 587-588, 192-196	0.4	1
83	Photodegradation Studies of Poly(Vinylidene Fluoride). <i>Materials Science Forum</i> , 2008 , 587-588, 543-54	70.4	1
82	Reconfigurable On-Chip Folded-Patch Antenna using Tunable Electroactive Materials 2007,		1
81	Optical coupling between scintillators and standard CMOS detectors. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2006 , 556, 281-286	1.2	1
80	Paraelectric-Antiferroelectric Phase Coexistence in the Deuteron Glass Rb0.5(ND4)0.5D2AsO4. <i>Ferroelectrics</i> , 2004 , 300, 117-120	0.6	1
79	Modification of Ferroelectric Properties of TGS Crystals Grown under a dc Electric field. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 658, 351		1

78	Phase coexistence in the deuteron glass Rb0.9(ND4)0.1D2AsO4 proven by neutron diffraction. <i>Ferroelectrics</i> , 1999 , 223, 203-210	0.6	1
77	Phase diagrams and structural order in mixed crystals BAxBP1 \blacksquare for x > 0.80. Ferroelectrics, 1995 , 172, 175-180	0.6	1
76	Sustainable Lithium-Ion Battery Separators Based on Poly(3-Hydroxybutyrate-Co-Hydroxyvalerate) Pristine and Composite Electrospun Membranes. <i>Energy Technology</i> ,2100761	3.5	1
75	Biomimetic 3D Environment Based on Microgels as a Model for the Generation of Drug Resistance in Multiple Myeloma. <i>Materials</i> , 2021 , 14,	3.5	1
74	Large-scale aqueous synthesis of Cu(In,Ga)Se nanoparticles for photocatalytic degradation of ciprofloxacin. <i>Dalton Transactions</i> , 2021 , 50, 16819-16828	4.3	1
73	Tuning magnetic response and ionic conductivity of electrospun hybrid membranes for tissue regeneration strategies. <i>Polymers for Advanced Technologies</i> ,	3.2	1
72	Silk fibroin and sericin polymer blends for sustainable battery separators <i>Journal of Colloid and Interface Science</i> , 2021 , 611, 366-376	9.3	1
71	Self-monitoring Composite Rods for Sustainable Construction. <i>Communications in Computer and Information Science</i> , 2010 , 193-201	0.3	1
70	Magnetic and high-dielectric-constant nanoparticle polymer tri-composites for sensor applications. <i>Journal of Materials Science</i> , 2020 , 55, 16234-16246	4.3	1
69	Photocurable temperature activated humidity hybrid sensing materials for multifunctional coatings. <i>Polymer</i> , 2021 , 221, 123635	3.9	1
68	Binary polyamide hybrid composites containing carbon allotropes and metal particles with radiofrequency shielding effect. <i>Polymer Composites</i> , 2019 , 40, E1338-E1352	3	1
67	Functional, lightweight materials: outlook, future trends, and challenges 2021 , 503-507		1
66	Additive manufacturing of multifunctional materials 2021 , 25-42		1
65	High deformation multifunctional composites: materials, processes, and applications 2021 , 317-350		1
64	Capacitive and illumination systems based on printed and hybrid electronics. <i>Flexible and Printed Electronics</i> , 2021 , 6, 015004	3.1	1
63	A Facile Nanoimpregnation Method for Preparing Paper-Based Sensors and Actuators. <i>Advanced Materials Technologies</i> , 2021 , 6, 2100476	6.8	1
62	Direct-Ink-Writing of Electroactive Polymers for Sensing and Energy Storage Applications. <i>Macromolecular Materials and Engineering</i> ,2100372	3.9	1
61	Patterned separator membranes with pillar surface microstructures for improved battery performance. <i>Journal of Colloid and Interface Science</i> , 2021 , 596, 158-172	9.3	1

60	Electroactive Smart Materials for Neural Tissue Regeneration ACS Applied Bio Materials, 2021, 4, 6604	-6618	1
59	Fractionating stem cells secretome for Parkinson's disease modeling: Is it the whole better than the sum of its parts?. <i>Biochimie</i> , 2021 , 189, 87-98	4.6	1
58	Photocurable Printed Piezocapacitive Pressure Sensor Based on an Acrylic Resin Modified with Polyaniline and Lignin. <i>Advanced Materials Technologies</i> ,2101503	6.8	1
57	Merging Solution Processing and Printing for Sustainable Fabrication of Cu(In,Ga)Se2 Photovoltaics. <i>Chemical Engineering Journal</i> , 2022 , 136188	14.7	1
56	Natural based reusable materials for microfluidic substrates: The silk road towards sustainable portable analytical systems. <i>Applied Materials Today</i> , 2022 , 28, 101507	6.6	1
55	Electrical stimulation: Effective cue to direct osteogenic differentiation of mesenchymal stem cells? 2022 , 138, 212918		1
54	Dielectric, NMR and X-ray diffraction study of pseudo-one-dimensional Cs1☑ (NH4) x H2PO4. <i>Ferroelectrics</i> , 1999 , 226, 159-167	0.6	0
53	Environmentally friendly carrageenan-based ionic-liquid driven soft actuators. <i>Materials Advances</i> , 2022 , 3, 937-945	3.3	O
52	Magnetorheological Elastomer-Based Materials and Devices: State of the Art and Future Perspectives. <i>Advanced Engineering Materials</i> , 2021 , 23, 2170023	3.5	O
51	Crystallization Monitoring of Semicrystalline Poly(vinylidene fluoride)/1-Ethyl-3-methylimidazolium Hexafluorophosphate [Emim][PF6] Ionic Liquid Blends. <i>Crystal Growth and Design</i> , 2021 , 21, 4406-4416	3.5	0
50	Deposition of Ti-Zr-O-N films by reactive magnetron sputtering of Zr target with Ti ribbons. <i>Surface and Coatings Technology</i> , 2021 , 409, 126737	4.4	О
49	Magnetic field into multifunctional materials: Magnetorheological, magnetostrictive, and magnetocaloric 2021 , 391-405		O
48	Multifunctional materials based on smart hydrogels for biomedical and 4D applications 2021 , 407-467		О
47	Thermal degradation behavior of ionic liquid/ fluorinated polymer composites: Effect of polymer type and ionic liquid anion and cation. <i>Polymer</i> , 2021 , 229, 123995	3.9	0
46	Nanostructured Cr(N,O) based thin films for relative humidity sensing. <i>Vacuum</i> , 2021 , 191, 110333	3.7	О
45	Multifunctional hard coatings based on CrNx for temperature sensing applications. <i>Sensors and Actuators A: Physical</i> , 2021 , 329, 112794	3.9	O
44	Influence of cellulose nanocrystal surface functionalization on the bending response of cellulose nanocrystal/ionic liquid soft actuators. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 6710-6716	3.6	О
43	Bio-based Piezo- and Thermo-Resistive Photo-Curable Sensing Materials from Acrylated Epoxidized Soybean Oil. <i>Macromolecular Materials and Engineering</i> ,2100934	3.9	O

42	Greener Solvent-Based Processing of Magnetoelectric Nanocomposites. <i>ACS Sustainable Chemistry and Engineering</i> , 2022 , 10, 4122-4132	8.3	O
41	Ionic liquid modified electroactive polymer-based microenvironments for tissue engineering. <i>Polymer</i> , 2022 , 246, 124731	3.9	О
40	Transparent Piezoelectric Polymer-Based Materials for Energy Harvesting and Multitouch Detection Devices. <i>ACS Applied Electronic Materials</i> , 2022 , 4, 287-296	4	О
39	Improved performance of polyimide Cirlex-based dielectric barrier discharge plasma actuators for flow control. <i>Polymers for Advanced Technologies</i> , 2022 , 33, 1278-1290	3.2	O
38	Carrageenan based printable magnetic nanocomposites for actuator applications. <i>Composites Science and Technology</i> , 2022 , 109485	8.6	О
37	Electroactive functional microenvironments from bioactive polymers: A new strategy to address cancer 2022 , 212849		O
36	Polyethylene/ poly(3-hydroxybutyrate-co-3-hydroxyvalerate /carbon nanotube composites for eco-friendly electronic applications. <i>Polymer Testing</i> , 2022 , 112, 107642	4.5	О
35	Structural organization of ionic liquids embedded in fluorinated polymers. <i>Journal of Molecular Liquids</i> , 2022 , 360, 119385	6	O
34	Synthetic polymer-based membranes for lithium-ion batteries 2020 , 383-415		
33	Open Questions, Challenges and Outlook 2018 , 230-234		
32	Printing Techniques for Batteries 2018 , 21-62		
31	Design of Printed Batteries 2018 , 112-143		
30	Materials Selection, Processing, and Characterization Technologies 2017 , 13-43		
29	Polymer-Based Magnetoelectric Composites: Polymer as a Binder 2017 , 65-85		
28	Types of Polymer-Based Magnetoelectric Materials 2017 , 45-63		
27	Low-Dimensional Polymer-Based Magnetoelectric Structures 2017 , 115-123		
26	Applications of Polymer-Based Magnetoelectric Materials 2017 , 153-170		
25	[P1.034] Comparing Performance of Solid Polymer Electrolytes Based on Poly(Vinylidene Fluoride [] Trifluoroethylene) Obtained by Different Processing Techniques. <i>Procedia Engineering</i> , 2012 , 44, 751-	752	

24	Modeling Carbon Nanotube Electrical Properties in CNT/Polymer Composites. <i>Advanced Structured Materials</i> , 2012 , 287-295	0.6
23	Development of a Piezoelectric Transducers System to Improve Mixing of Fluids. <i>Procedia Engineering</i> , 2012 , 47, 706-709	
22	Development of a Flexible Conductive Polymer Membrane on Electroactive Hydrogel Microfibers. Materials Research Society Symposia Proceedings, 2009 , 1234, 1	
21	Nucleation of the electroactive phase of poly(vinylidene fluoride) by ferrite nanoparticles: surface versus size effects. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1312, 1	
20	Reversible aggregation and chemical resistance of magnetic nanoclusters for their recycling and repetitive use in industrial bioprocesses. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 6707-11	1.3
19	Structural and Mechanical Properties of AZOY Thin Films Deposited on Flexible Substrates. <i>Materials Science Forum</i> , 2008 , 587-588, 834-838	0.4
18	A Lab-on-a-Chip for Clinical Analysis with Acoustic Microagitation based on Piezoelectric Poly(Vinylidene Fluoride). <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1138, 1	
17	Influence of the Crystallisation Kinetics on the Microstructural Properties of ⊕VDF. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 949, 1	
16	Ferroelectric/Antiferroelectric Phase Coexistence in the Intermediate Concentration Regions of the BA x BP1 Phase Diagram. <i>Ferroelectrics</i> , 2004 , 301, 191-194	0.6
15	Solution processing of piezoelectric unconventional structures 2022 , 375-439	
14	Luminescent Poly(vinylidene fluoride)-Based Inks for Anticounterfeiting Applications. <i>Advanced Photonics Research</i> ,2100151	1.9
13	Advances in Cathode Nanomaterials for Lithium-Ion Batteries 2019 , 105-145	
12	Bulk Magnetoelectric Composites 2022 , 196-206	
11	Self-diagnosing braided composite rod 2010 , 543-544	
10	Spherical and needle shaped magnetic nanoparticles for friction and magnetic stimulated transformation of microorganisms. <i>Nano Structures Nano Objects</i> , 2021 , 26, 100732	5.6
9	Thermal activation of charge carriers in ionic and electronic semiconductor FAgVO and FAgVO@V V O composite xerogels <i>RSC Advances</i> , 2019 , 9, 42439-42449	3.7
8	Piezoelectric Polymers and Polymer Composites for Sensors and Actuators 2018,	
7	Nanocomposites Materials and Their Applications: Current and Future Trends. <i>Engineering Materials</i> , 2022 , 3-14	0.4

6	Nanocomposites for Energy Storage Applications. Engineering Materials, 2022, 533-565	0.4
5	Multifunctional Touch Sensing and Antibacterial Polymer-Based Core-Shell Metallic Nanowire Composites for High Traffic Surfaces. <i>Advanced Materials Technologies</i> ,2101575	6.8
4	Kit E nergy, Environment and Sustainability E An Educational Strategy for a Sustainable Future. A Case Study for Guinea-Bissau. <i>Education Sciences</i> , 2021 , 11, 787	2.2
3	Understanding Electrogenerated Chemiluminescence at graphite screen-printed electrodes. <i>Journal of Electroanalytical Chemistry</i> , 2022 , 116331	4.1
2	Template-free hydrothermal synthesis of lithium iron tavorite with complex morphologies driven by phase transformation. <i>Nano Structures Nano Objects</i> , 2022 , 30, 100870	5.6
1	Three-Dimensional Printing for Solid-State Batteries. ACS Symposium Series,331-350	0.4