Jennica L Zaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8572127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	pH-dependent reversibly activatable cell-penetrating peptides improve the antitumor effect of artemisinin-loaded liposomes. Journal of Colloid and Interface Science, 2021, 586, 391-403.	9.4	28
2	Acid-sensitive hybrid polymeric micelles containing a reversibly activatable cell-penetrating peptide for tumor-specific cytoplasm targeting. Journal of Controlled Release, 2018, 279, 147-156.	9.9	61
3	Characterization and Oral Delivery of Proinsulin-Transferrin Fusion Protein Expressed Using ExpressTec. International Journal of Molecular Sciences, 2018, 19, 378.	4.1	10
4	Single chain Fc-dimer-human growth hormone fusion protein for improved drug delivery. Biomaterials, 2017, 117, 24-31.	11.4	8
5	Characterization of Polyelectrolyte Complex Formation Between Anionic and Cationic Poly(amino) Tj ETQq1 1 0	.784314 r	gBT_/Overloc
6	Tissue barriers and novel approaches to achieve hepatoselectivity of subcutaneously-injected insulin therapeutics. Tissue Barriers, 2016, 4, e1156804.	3.2	13
7	Proinsulin–Transferrin Fusion Protein Exhibits a Prolonged and Selective Effect on the Control of Hepatic Glucose Production in an Experimental Model of Type 1 Diabetes. Molecular Pharmaceutics, 2016, 13, 2641-2646.	4.6	8
8	Selective Intracellular Delivery of Recombinant Arginine Deiminase (ADI) Using pH-Sensitive Cell Penetrating Peptides To Overcome ADI Resistance in Hypoxic Breast Cancer Cells. Molecular Pharmaceutics, 2016, 13, 262-271.	4.6	47
9	Cationic and amphipathic cell-penetrating peptides (CPPs): Their structures and in vivo studies in drug delivery. Frontiers of Chemical Science and Engineering, 2015, 9, 407-427.	4.4	40
10	Lipid-Based Drug Carriers for Prodrugs to Enhance Drug Delivery. AAPS Journal, 2015, 17, 83-92.	4.4	52
11	Proinsulin-Transferrin Fusion Protein as a Novel Long-Acting Insulin Analog for the Inhibition of Hepatic Clucose Production. Diabetes, 2014, 63, 1779-1788.	0.6	23
12	Interaction between Cell-Penetrating Peptides and Acid-Sensitive Anionic Oligopeptides as a Model for the Design of Targeted Drug Carriers. Molecular Pharmaceutics, 2014, 11, 1583-1590.	4.6	37
13	Tumor targeting of a cell penetrating peptide by fusing with a pH-sensitive histidine-glutamate co-oligopeptide. Biomaterials, 2014, 35, 4082-4087.	11.4	42
14	Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 2013, 65, 1357-1369.	13.7	1,273
15	Characterization of transferrin receptor-mediated endocytosis and cellular iron delivery of recombinant human serum transferrin from rice (Oryza sativaL.). BMC Biotechnology, 2012, 12, 92.	3.3	23
16	Recombinant peptide constructs for targeted cell penetrating peptide-mediated delivery. Journal of Controlled Release, 2012, 158, 357-361.	9.9	30
17	Effects of Receptor Binding on Plasma Half-Life of Bifunctional Transferrin Fusion Proteins. Molecular Pharmaceutics, 2011, 8, 457-465.	4.6	31
18	Receptor-mediated activation of a proinsulin-transferrin fusion protein in hepatoma cells. Journal of Controlled Release, 2011, 155, 386-392.	9.9	16

Jennica L Zaro

#	Article	IF	CITATIONS
19	Nuclear Localization of Cell-Penetrating Peptides Is Dependent on Endocytosis Rather Than Cytosolic Delivery in CHO Cells. Molecular Pharmaceutics, 2009, 6, 337-344.	4.6	51
20	Membrane Transduction of Oligoarginine in HeLa Cells Is Not Mediated by Macropinocytosis. Molecular Pharmaceutics, 2006, 3, 181-186.	4.6	33
21	Cytosolic delivery of a p16-peptide oligoarginine conjugate for inhibiting proliferation of MCF7 cells. Journal of Controlled Release, 2005, 108, 409-417.	9.9	21
22	Evidence that membrane transduction of oligoarginine does not require vesicle formation. Experimental Cell Research, 2005, 307, 164-173.	2.6	47
23	Quantitative comparison of membrane transduction and endocytosis of oligopeptides. Biochemical and Biophysical Research Communications, 2003, 307, 241-247.	2.1	78