
Yaoyao Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8571677/publications.pdf Version: 2024-02-01

Υλογλο Ιμ

#	Article	IF	CITATIONS
1	An Implantable Peripheral Nerve Recording and Stimulation System for Experiments on Freely Moving Animal Subjects. Scientific Reports, 2018, 8, 6115.	3.3	77
2	A Trimodal Wireless Implantable Neural Interface System-on-Chip. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 1207-1217.	4.0	58
3	An Inductively-Powered Wireless Neural Recording and Stimulation System for Freely-Behaving Animals. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 413-424.	4.0	53
4	Position and Orientation Insensitive Wireless Power Transmission for EnerCage-Homecage System. IEEE Transactions on Biomedical Engineering, 2017, 64, 2439-2449.	4.2	50
5	Wireless opto-electro neural interface for experiments with small freely behaving animals. Journal of Neural Engineering, 2018, 15, 046032.	3.5	39
6	A Dual-Band Wireless Power Transmission System for Evaluating mm-Sized Implants. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 595-607.	4.0	34
7	A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 608-618.	4.0	33
8	A mm-sized free-floating wirelessly powered implantable optical stimulating system-on-a-chip. , 2018, , .		31
9	A Wirelessly-Powered Homecage With Segmented Copper Foils and Closed-Loop Power Control. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10, 979-989.	4.0	29
10	A fully transparent, flexible PEDOT:PSS–ITO–Ag–ITO based microelectrode array for ECoG recording. Lab on A Chip, 2021, 21, 1096-1108.	6.0	28
11	Influence of Armband Form Factors on Wearable ECG Monitoring Performance. IEEE Sensors Journal, 2021, 21, 11046-11060.	4.7	15
12	A Reconfigurable Passive Voltage Multiplier for Wireless Mobile IoT Applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 615-619.	3.0	13
13	Inductively coupled, mm-sized, single channel optical neuro-stimulator with intensity enhancer. Microsystems and Nanoengineering, 2019, 5, 23.	7.0	12
14	A Software-Defined Radio Receiver for Wireless Recording From Freely Behaving Animals. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 1645-1654.	4.0	9
15	A closed-loop wireless homecage for optogenetic stimulation experiments. , 2015, , .		8
16	A miniaturized, wirelessly-powered, reflector-coupled single channel opto neurostimulator. , 2018, , .		8
17	Toward a High-Throughput Wireless Smart Arena for Behavioral Experiments on Small Animals. IEEE Transactions on Biomedical Engineering, 2020, 67, 2359-2369.	4.2	7
18	Wirelessly-Powered Cage Designs for Supporting Long-Term Experiments on Small Freely Behaving Animals in a Large Experimental Arena. Electronics (Switzerland), 2020, 9, 1999.	3.1	7

ΥΑΟΥΑΟ JIA

#	Article	IF	CITATIONS
19	Towards a free-floating wireless implantable optogenetic stimulating system. , 2017, , .		6
20	Towards a mm-Sized Free-Floating Wireless Implantable Opto-Electro Stimulation Device. , 2019, , .		5
21	Toward A Robust Multi-Antenna Receiver for Wireless Recording From Freely-Behaving Animals. , 2018, , .		4
22	A mm-Sized Free-Floating Wireless Implantable Opto-Electro Stimulation Device. Micromachines, 2020, 11, 621.	2.9	4
23	Continuous ECG Monitoring with Low-Power Electronics and Energy Harvesting. , 2020, , .		4
24	Recent advances in power supply strategies for untethered neural implants. Journal of Micromechanics and Microengineering, 2021, 31, 104003.	2.6	4
25	An Ultrasonic Energy Harvesting IC Providing Adjustable Bias Voltage for Pre-Charged CMUT. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16, 842-851.	4.0	4
26	Power Efficiency and Power Delivery Measurement in Inductive Links with Arbitrary Source and Load Impedance Values. , 2018, , .		2
27	Wireless Multimodal Neural Interface Device for Neural Control Studies. , 2021, , .		2
28	Towards a Self-Powered ECG and PPG Sensing Wearable Device. , 2021, 2021, 6791-6794.		1
29	Live demonstration: A smart homecage system with behavior analysis and closed-loop optogenetic stimulation capacibilities. , 2015, , .		0
30	Wireless Circuits and Systems: Energy-Neutral Links. , 2020, , 1-25.		0
31	Wireless Circuits and Systems: Energy-Neutral Links. , 2022, , 1037-1061.		Ο