
Simen Akkermans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8571619/publications.pdf Version: 2024-02-01

SIMEN AKKEDMANS

#	Article	IF	CITATIONS
1	Design, Implementation and Simulation of a Small-Scale Biorefinery Model. Processes, 2022, 10, 829.	1.3	5
2	Effects of Temperature and pH on Recombinant Thaumatin II Production by Pichia pastoris. Foods, 2022, 11, 1438.	1.9	7
3	Processing Method for the Quantification of Methanol and Ethanol from Bioreactor Samples Using Gas Chromatography–Flame Ionization Detection. ACS Omega, 2022, 7, 24121-24133.	1.6	9
4	A Population Balance Model to Describe the Evolution of Sublethal Injury. Foods, 2021, 10, 1674.	1.9	3
5	Quantitative methods to predict the effect of climate change on microbial food safety: A needs analysis. Trends in Food Science and Technology, 2021, , .	7.8	3
6	An Accurate Method for Studying Individual Microbial Lag: Experiments and Computations. Frontiers in Microbiology, 2021, 12, 725499.	1.5	4
7	Design of a Low-Power Radio Frequency Unit and Its Application for Bacterial Inactivation under Laboratory Conditions. Applied Sciences (Switzerland), 2021, 11, 11117.	1.3	3
8	A Reproducible Method for Growing Biofilms on Polystyrene Surfaces: Biomass and Bacterial Viability Evolution of Pseudomonas fluorescens and Staphylococcus epidermidis. Applied Sciences (Switzerland), 2020, 10, 4544.	1.3	3
9	The potential of violet, blue, green and red light for the inactivation of P. fluorescens as planktonic cells, individual cells on a surface and biofilms. Food and Bioproducts Processing, 2020, 124, 184-195.	1.8	6
10	Visible Light as an Antimicrobial Strategy for Inactivation of Pseudomonas fluorescens and Staphylococcus epidermidis Biofilms. Antibiotics, 2020, 9, 171.	1.5	21
11	Microbial Inactivation Models for Thermal Processes. Food Engineering Series, 2020, , 399-420.	0.3	2
12	Effect of microstructure and initial cell conditions on thermal inactivation kinetics and sublethal injury of Listeria monocytogenes in fish-based food model systems. Food Microbiology, 2019, 84, 103267.	2.1	20
13	Bioproduction of the Recombinant Sweet Protein Thaumatin: Current State of the Art and Perspectives. Frontiers in Microbiology, 2019, 10, 695.	1.5	47
14	Mechanistic modelling of the inhibitory effect of pH on microbial growth. Food Microbiology, 2018, 72, 214-219.	2.1	18
15	Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing. Food Research International, 2018, 106, 509-521.	2.9	104
16	An interaction model for the combined effect of temperature, pH and water activity on the growth rate of E. coli K12. Food Research International, 2018, 106, 1123-1131.	2.9	12
17	Parameter estimations in predictive microbiology: Statistically sound modelling of the microbial growth rate. Food Research International, 2018, 106, 1105-1113.	2.9	11
18	A low-complexity metabolic network model for the respiratory and fermentative metabolism of Escherichia coli. PLoS ONE, 2018, 13, e0202565.	1.1	4

SIMEN AKKERMANS

#	Article	IF	CITATIONS
19	A tutorial on uncertainty propagation techniques for predictive microbiology models: A critical analysis of state-of-the-art techniques. International Journal of Food Microbiology, 2018, 282, 1-8.	2.1	22
20	Occurrence, distribution and contamination levels of heat-resistant moulds throughout the processing of pasteurized high-acid fruit products. International Journal of Food Microbiology, 2018, 281, 72-81.	2.1	45
21	Including experimental uncertainty on the independent variables when modelling microbial dynamics: The combined effect of pH and acetic acid on the growth rate of E. coli K12. Journal of Microbiological Methods, 2018, 149, 20-28.	0.7	3
22	Comparing design of experiments and optimal experimental design techniques for modelling the microbial growth rate under static environmental conditions. Food Microbiology, 2018, 76, 504-512.	2.1	6
23	Modeling the effect of pH, water activity, and ethanol concentration on biofilm formation of Staphylococcus aureus. Food Microbiology, 2018, 76, 287-295.	2.1	31
24	Introducing a novel interaction model structure for the combined effect of temperature and pH on the microbial growth rate. International Journal of Food Microbiology, 2017, 240, 85-96.	2.1	23
25	Application of a dynamic metabolic flux algorithm during a temperature-induced lag phase. Food and Bioproducts Processing, 2017, 102, 1-19.	1.8	3
26	Simulation of Escherichia coli Dynamics in Biofilms and Submerged Colonies with an Individual-Based Model Including Metabolic Network Information. Frontiers in Microbiology, 2017, 8, 2509.	1.5	15
27	Optimal experimental design for discriminating between microbial growth models as function of suboptimal temperature: From in silico to in vivo. Food Research International, 2016, 89, 689-700.	2.9	8
28	On the effect of sampling rate and experimental noise in the discrimination between microbial growth models in the suboptimal temperature range. Computers and Chemical Engineering, 2016, 85, 84-93.	2.0	6
29	A protocol for the cultivation and monitoring of ileal gut microbiota surrogates. Journal of Applied Microbiology, 0, , .	1.4	0