Michal Lipson

List of Publications by Citations

Source: https://exaly.com/author-pdf/8571304/michal-lipson-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

89 165 29,022 299 h-index g-index citations papers 36,967 7.8 7.43 351 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
299	Micrometre-scale silicon electro-optic modulator. <i>Nature</i> , 2005 , 435, 325-7	50.4	1587
298	Guiding and confining light in void nanostructure. Optics Letters, 2004, 29, 1209-11	3	1198
297	All-optical control of light on a silicon chip. <i>Nature</i> , 2004 , 431, 1081-4	50.4	1064
296	New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. <i>Nature Photonics</i> , 2013 , 7, 597-607	33.9	634
295	12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. <i>Optics Express</i> , 2007 , 15, 430-6	3.3	623
294	Broad-band optical parametric gain on a silicon photonic chip. <i>Nature</i> , 2006 , 441, 960-3	50.4	606
293	CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. <i>Nature Photonics</i> , 2010 , 4, 37-40	33.9	600
292	Nanotaper for compact mode conversion. <i>Optics Letters</i> , 2003 , 28, 1302-4	3	570
291	Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. <i>Nature</i> , 2009 , 457, 71-5	50.4	564
2 90	Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. <i>Physical Review Letters</i> , 2006 , 96, 123901	7.4	512
289	Silicon nanostructure cloak operating at optical frequencies. <i>Nature Photonics</i> , 2009 , 3, 461-463	33.9	502
288	Graphene electro-optic modulator with 30 GHz bandwidth. <i>Nature Photonics</i> , 2015 , 9, 511-514	33.9	491
287	Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. <i>Optics Letters</i> , 2004 , 29, 1626-8	3	465
286	Dissipative Kerr solitons in optical microresonators. <i>Science</i> , 2018 , 361,	33.3	455
285	WDM-compatible mode-division multiplexing on a silicon chip. <i>Nature Communications</i> , 2014 , 5, 3069	17.4	428
284	Octave-spanning frequency comb generation in a silicon nitride chip. <i>Optics Letters</i> , 2011 , 36, 3398-400	3	344
283	All-optical logic based on silicon micro-ring resonators. <i>Optics Express</i> , 2007 , 15, 924-9	3.3	321

282	Photonic-chip-based frequency combs. <i>Nature Photonics</i> , 2019 , 13, 158-169	33.9	303
281	Silicon-chip-based ultrafast optical oscilloscope. <i>Nature</i> , 2008 , 456, 81-4	50.4	301
280	Optical 4x4 hitless slicon router for optical networks-on-chip (NoC). <i>Optics Express</i> , 2008 , 16, 15915-22	3.3	288
279	Broadband mid-infrared frequency comb generation in a Si(3)N(4) microresonator. <i>Optics Letters</i> , 2015 , 40, 4823-6	3	279
278	Tailored anomalous group-velocity dispersion in silicon channel waveguides. <i>Optics Express</i> , 2006 , 14, 4357-62	3.3	278
277	Nanophotonic lithium niobate electro-optic modulators. <i>Optics Express</i> , 2018 , 26, 1547-1555	3.3	276
276	Nonlinear optics in photonic nanowires. <i>Optics Express</i> , 2008 , 16, 1300-20	3.3	273
275	Signal regeneration using low-power four-wave mixing on silicon chip. <i>Nature Photonics</i> , 2008 , 2, 35-38	33.9	256
274	Optical bistability on a silicon chip. <i>Optics Letters</i> , 2004 , 29, 2387-9	3	254
273	Controlling photonic structures using optical forces. <i>Nature</i> , 2009 , 462, 633-6		
	Controlling photonic scraces asing optical forces. Nature, 2002, 402, 033 0	50.4	247
272	Battery-operated integrated frequency comb generator. <i>Nature</i> , 2018 , 562, 401-405		247
			"
272	Battery-operated integrated frequency comb generator. <i>Nature</i> , 2018 , 562, 401-405	50.4	245
272 271	Battery-operated integrated frequency comb generator. <i>Nature</i> , 2018 , 562, 401-405 Synchronization of micromechanical oscillators using light. <i>Physical Review Letters</i> , 2012 , 109, 233906	50.4 7.4	245
272 271 270	Battery-operated integrated frequency comb generator. <i>Nature</i> , 2018 , 562, 401-405 Synchronization of micromechanical oscillators using light. <i>Physical Review Letters</i> , 2012 , 109, 233906 Generation of correlated photons in nanoscale silicon waveguides. <i>Optics Express</i> , 2006 , 14, 12388-93	50.4 7.4 3.3	245 238 238
272 271 270 269	Battery-operated integrated frequency comb generator. <i>Nature</i> , 2018 , 562, 401-405 Synchronization of micromechanical oscillators using light. <i>Physical Review Letters</i> , 2012 , 109, 233906 Generation of correlated photons in nanoscale silicon waveguides. <i>Optics Express</i> , 2006 , 14, 12388-93 On-chip gas detection in silicon optical microcavities. <i>Optics Express</i> , 2008 , 16, 4296-301 Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. <i>Optica</i> , 2017 ,	50.4 7.4 3.3	245 238 238 234
272 271 270 269 268	Battery-operated integrated frequency comb generator. <i>Nature</i> , 2018 , 562, 401-405 Synchronization of micromechanical oscillators using light. <i>Physical Review Letters</i> , 2012 , 109, 233906 Generation of correlated photons in nanoscale silicon waveguides. <i>Optics Express</i> , 2006 , 14, 12388-93 On-chip gas detection in silicon optical microcavities. <i>Optics Express</i> , 2008 , 16, 4296-301 Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. <i>Optica</i> , 2017 , 4, 619	50.4 7.4 3.3 3.3 8.6	245 238 238 234 233

264	Non-reciprocal phase shift induced by an effective magnetic flux for light. <i>Nature Photonics</i> , 2014 , 8, 701-705	33.9	214
263	High confinement micron-scale silicon nitride high Q ring resonator. <i>Optics Express</i> , 2009 , 17, 11366-70	3.3	209
262	Harmonic generation in silicon nitride ring resonators. <i>Optics Express</i> , 2011 , 19, 11415-21	3.3	201
261	Subwavelength confinement in an integrated metal slot waveguide on silicon. <i>Optics Letters</i> , 2006 , 31, 2133-5	3	197
2 60	On-chip mode-division multiplexing switch. <i>Optica</i> , 2015 , 2, 530	8.6	194
259	Low loss etchless silicon photonic waveguides. <i>Optics Express</i> , 2009 , 17, 4752-7	3.3	191
258	Ultra-low power parametric frequency conversion in a silicon microring resonator. <i>Optics Express</i> , 2008 , 16, 4881-7	3.3	185
257	Cascaded silicon micro-ring modulators for WDM optical interconnection. <i>Optics Express</i> , 2006 , 14, 943	I- <u>\$</u> .3	184
256	Thermally controlled comb generation and soliton modelocking in microresonators. <i>Optics Letters</i> , 2016 , 41, 2565-8	3	182
255	Photolithographic patterning of organic electronic materials. <i>Organic Electronics</i> , 2006 , 7, 22-28	3.5	179
254	Ultrasmall mode volumes in dielectric optical microcavities. <i>Physical Review Letters</i> , 2005 , 95, 143901	7.4	177
253	Changing the colour of light in a silicon resonator. <i>Nature Photonics</i> , 2007 , 1, 293-296	33.9	176
252	Optofluidic trapping and transport on solid core waveguides within a microfluidic device. <i>Optics Express</i> , 2007 , 15, 14322-34	3.3	173
251	All-optical switching on a silicon chip. <i>Optics Letters</i> , 2004 , 29, 2867-9	3	161
250	Carrier-induced optical bistability in silicon ring resonators. <i>Optics Letters</i> , 2006 , 31, 341-3	3	159
249	On-chip dual-comb source for spectroscopy. <i>Science Advances</i> , 2018 , 4, e1701858	14.3	155
248	Near-field radiative cooling of nanostructures. <i>Nano Letters</i> , 2012 , 12, 4546-50	11.5	153
247	Horizontal single and multiple slot waveguides: optical transmission at lambda = 1550 nm. <i>Optics Express</i> , 2007 , 15, 17967-72	3.3	153

(2014-2009)

246	Optical nonreciprocity in optomechanical structures. <i>Physical Review Letters</i> , 2009 , 102, 213903	7.4	152
245	Near-field radiative heat transfer between parallel structures in the deep subwavelength regime. <i>Nature Nanotechnology</i> , 2016 , 11, 515-519	28.7	150
244	Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors. <i>Optics Express</i> , 2009 , 17, 15248-56	3.3	145
243	Modelocking and femtosecond pulse generation in chip-based frequency combs. <i>Optics Express</i> , 2013 , 21, 1335-43	3.3	143
242	Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides. <i>Optics Express</i> , 2010 , 18, 3582-91	3.3	143
241	First-principle derivation of gain in high-index-contrast waveguides. <i>Optics Express</i> , 2008 , 16, 16659-69	3.3	141
240	Ultra-low capacitance and high speed germanium photodetectors on silicon. <i>Optics Express</i> , 2009 , 17, 7901-6	3.3	139
239	All-Optical Comb Switch for Multiwavelength Message Routing in Silicon Photonic Networks. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 767-769	2.2	139
238	Silicon-chip-based mid-infrared dual-comb spectroscopy. <i>Nature Communications</i> , 2018 , 9, 1869	17.4	139
237	Silicon-based monolithic optical frequency comb source. <i>Optics Express</i> , 2011 , 19, 14233-9	3.3	132
236	Cavity-enhanced on-chip absorption spectroscopy using microring resonators. <i>Optics Express</i> , 2008 , 16, 11930-6	3.3	131
235	Optical time lens based on four-wave mixing on a silicon chip. Optics Letters, 2008, 33, 1047-9	3	130
234	Electrically driven silicon resonant light emitting device based on slot-waveguide. <i>Optics Express</i> , 2005 , 13, 10092-101	3.3	120
233	Overcoming SiMIFilm stress limitations for high quality factor ring resonators. <i>Optics Express</i> , 2013 , 21, 22829-33	3.3	119
232	How lasing happens in CsPbBr perovskite nanowires. <i>Nature Communications</i> , 2019 , 10, 265	17.4	118
231	All-optical slow-light on a photonic chip. <i>Optics Express</i> , 2006 , 14, 2317-22	3.3	117
230	CMOS-compatible athermal silicon microring resonators. <i>Optics Express</i> , 2010 , 18, 3487-93	3.3	115
229	Demonstration of strong near-field radiative heat transfer between integrated nanostructures. <i>Nano Letters</i> , 2014 , 14, 6971-5	11.5	114

228	Athermal silicon microring resonators with titanium oxide cladding. Optics Express, 2013, 21, 26557-63	3.3	114
227	On-Chip Optical Squeezing. <i>Physical Review Applied</i> , 2015 , 3,	4.3	112
226	Nanophotonic trapping for precise manipulation of biomolecular arrays. <i>Nature Nanotechnology</i> , 2014 , 9, 448-52	28.7	111
225	Mode-locked mid-infrared frequency combs in a silicon microresonator. <i>Optica</i> , 2016 , 3, 854	8.6	108
224	Wide-bandwidth continuously tunable optical delay line using silicon microring resonators. <i>Optics Express</i> , 2010 , 18, 26525-34	3.3	106
223	Frequency conversion over two-thirds of an octave in silicon nanowaveguides. <i>Optics Express</i> , 2010 , 18, 1904-8	3.3	106
222	High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. <i>Optics Express</i> , 2008 , 16, 11513-8	3.3	106
221	Low-loss silicon platform for broadband mid-infrared photonics. <i>Optica</i> , 2017 , 4, 707	8.6	105
220	Compact bandwidth-tunable microring resonators. <i>Optics Letters</i> , 2007 , 32, 3361-3	3	105
219	Ultrafast all-optical modulation on a silicon chip. <i>Optics Letters</i> , 2005 , 30, 2891-3	3	104
218	Ultrafast waveform compression using a time-domain telescope. <i>Nature Photonics</i> , 2009 , 3, 581-585	33.9	103
217	Synchronization and Phase Noise Reduction in Micromechanical Oscillator Arrays Coupled through Light. <i>Physical Review Letters</i> , 2015 , 115, 163902	7.4	101
216	Broadband hitless silicon electro-optic switch for on-chip optical networks. <i>Optics Express</i> , 2009 , 17, 222	23.15-80	101
215	Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. <i>Optics Letters</i> , 2015 , 40, 5117-20	3	99
214	Scalable 3D dense integration of photonics on bulk silicon. <i>Optics Express</i> , 2011 , 19, 17758-65	3.3	96
213	Thermal stabilization of a microring modulator using feedback control. <i>Optics Express</i> , 2012 , 20, 27999-	89.98	95
212	Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides. <i>Optics Express</i> , 2004 , 12, 4437-42	3.3	94
211	All-optical compact silicon comb switch. <i>Optics Express</i> , 2007 , 15, 9600-5	3.3	90

(2006-2007)

210	Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes. <i>Optics Express</i> , 2007 , 15, 3140-8	3.3	88
209	Large-scale optical phased array using a low-power multi-pass silicon photonic platform. <i>Optica</i> , 2020 , 7, 3	8.6	87
208	Deposited silicon high-speed integrated electro-optic modulator. <i>Optics Express</i> , 2009 , 17, 5118-24	3.3	86
207	Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides. <i>Optics Letters</i> , 2014 , 39, 4518-21	3	83
206	Compact Electro-Optic Modulators on a Silicon Chip. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2006 , 12, 1520-1526	3.8	83
205	Bandwidth shaping of microresonator-based frequency combs via dispersion engineering. <i>Optics Letters</i> , 2014 , 39, 3535-8	3	82
204	High-performance near-field thermophotovoltaics for waste heat recovery. <i>Nano Energy</i> , 2017 , 41, 344-	- 3:5 01	79
203	High-speed optical sampling using a silicon-chip temporal magnifier. <i>Optics Express</i> , 2009 , 17, 4324-9	3.3	79
202	Wide temperature range operation of micrometer-scale silicon electro-optic modulators. <i>Optics Letters</i> , 2008 , 33, 2185-7	3	79
201	Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. <i>Optics Letters</i> , 2017 , 42, 4541-4544	3	78
200	High confinement in silicon slot waveguides with sharp bends. <i>Optics Express</i> , 2006 , 14, 9197-202	3.3	78
199	Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers. <i>Optics Express</i> , 2010 , 18, 1879-87	3.3	77
198	Breather soliton dynamics in microresonators. <i>Nature Communications</i> , 2017 , 8, 14569	17.4	76
197	High Coupling Efficiency Etched Facet Tapers in Silicon Waveguides. <i>IEEE Photonics Technology Letters</i> , 2014 , 26, 2380-2382	2.2	76
196	Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography. <i>Nature Electronics</i> , 2019 , 2, 17-25	28.4	73
195	Low-loss composite photonic platform based on 2D semiconductor monolayers. <i>Nature Photonics</i> , 2020 , 14, 256-262	33.9	71
194	High quality factor etchless silicon photonic ring resonators. <i>Optics Express</i> , 2011 , 19, 6284-9	3.3	70
193	Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency. <i>Optics Express</i> , 2006 , 14, 6463-8	3.3	70

192	Broadband Operation of Nanophotonic Router for Silicon Photonic Networks-on-Chip. <i>IEEE Photonics Technology Letters</i> , 2010 , 22, 926-928	2.2	69
191	Ultra-low voltage, ultra-small mode volume silicon microring modulator. <i>Optics Express</i> , 2010 , 18, 18235	5-4.3	68
190	Micrometer-scale all-optical wavelength converter on silicon. Optics Letters, 2005, 30, 2733-5	3	67
189	Demonstration of high Raman gain in a submicrometer-size silicon-on-insulator waveguide. <i>Optics Letters</i> , 2005 , 30, 35-7	3	63
188	Tunable frequency combs based on dual microring resonators. <i>Optics Express</i> , 2015 , 23, 21527-40	3.3	60
187	Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides. <i>Optics Express</i> , 2016 , 24, 11043-53	3.3	60
186	Wavelength multicasting in silicon photonic nanowires. <i>Optics Express</i> , 2010 , 18, 18047-55	3.3	60
185	Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit. <i>Physical Review X</i> , 2015 , 5,	9.1	57
184	Strong polarization mode coupling in microresonators. <i>Optics Letters</i> , 2014 , 39, 5134-7	3	57
183	Sub-nm resolution cavity enhanced microspectrometer. <i>Optics Express</i> , 2010 , 18, 102-7	3.3	57
182	High-Speed 2\$, times ,\$2 Switch for Multiwavelength Silicon-Photonic Networks In-Chip. <i>Journal of Lightwave Technology</i> , 2009 , 27, 2900-2907	4	57
181	High-speed all-optical modulation using polycrystalline silicon microring resonators. <i>Applied Physics Letters</i> , 2008 , 92, 151104	3.4	57
180	On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities. <i>Optics Express</i> , 2014 , 22, 26517-25	3.3	56
179	Polysilicon photonic resonators for large-scale 3D integration of optical networks. <i>Optics Express</i> , 2007 , 15, 17283-90	3.3	56
178	Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection. <i>Applied Physics Letters</i> , 2004 , 85, 4854-4856	3.4	56
177	Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity. <i>Applied Physics Letters</i> , 2003 , 82, 4032-4034	3.4	55
176	Chip-based frequency combs with sub-100 GHz repetition rates. Optics Letters, 2012, 37, 875-7	3	53
175	High Q SiC microresonators. <i>Optics Express</i> , 2013 , 21, 16882-7	3.3	52

(2007-2007)

174	PINIP based high-speed high-extinction ratio micron-size silicon electrooptic modulator. <i>Optics Express</i> , 2007 , 15, 13035-42	3.3	52	
173	High bandwidth on-chip silicon photonic interleaver. <i>Optics Express</i> , 2010 , 18, 23079-87	3.3	51	
172	Multiple-wavelength integrated photonic networks based on microring resonator devices. <i>Journal of Optical Networking</i> , 2007 , 6, 112		51	
171	High confinement suspended micro-ring resonators in silicon-on-insulator. <i>Optics Express</i> , 2006 , 14, 625	59;63	51	
170	High-Performance Silicon-Nitride-Based Multiple-Wavelength Source. <i>IEEE Photonics Technology Letters</i> , 2012 , 24, 1375-1377	2.2	50	
169	Ultra high bandwidth WDM using silicon microring modulators. <i>Optics Express</i> , 2010 , 18, 16858-67	3.3	50	
168	Waveguide-integrated telecom-wavelength photodiode in deposited silicon. <i>Optics Letters</i> , 2011 , 36, 52-4	3	49	
167	On-chip platform for a phased array with minimal beam divergence and wide field-of-view. <i>Optics Express</i> , 2018 , 26, 2528-2534	3.3	48	
166	Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides. <i>Optics Letters</i> , 2011 , 36, 1263-5	3	48	
165	High quality factor and high confinement silicon resonators using etchless process. <i>Optics Express</i> , 2012 , 20, 21341-5	3.3	48	
164	Linearized silicon modulator based on a ring assisted Mach Zehnder inteferometer. <i>Optics Express</i> , 2013 , 21, 22549-57	3.3	47	
163	Transformation inverse design. <i>Optics Express</i> , 2013 , 21, 14223-43	3.3	47	
162	All-optical regeneration on a silicon chip. <i>Optics Express</i> , 2007 , 15, 7802-9	3.3	47	
161	Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation. <i>Nature Biomedical Engineering</i> , 2020 , 4, 223-231	19	46	
160	Broadband Silicon Photonic Electrooptic Switch for Photonic Interconnection Networks. <i>IEEE Photonics Technology Letters</i> , 2011 , 23, 504-506	2.2	46	
159	Athermal silicon microring electro-optic modulator. <i>Optics Letters</i> , 2012 , 37, 2253-5	3	46	
158	Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion. ACS Nano, 2017, 11, 3001-3009	16.7	45	
157	High Speed Carrier Injection 18 Gb/s Silicon Micro-ring Electro-optic Modulator. <i>Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS</i> , 2007 ,		45	

156	Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator. <i>Optics Letters</i> , 2006 , 31, 2701-3	3	45
155	Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface. <i>Optics Express</i> , 2006 , 14, 12629-36	3.3	45
154	Synchronization of coupled optical microresonators. <i>Nature Photonics</i> , 2018 , 12, 688-693	33.9	45
153	All-optical switching of a single resonance in silicon ring resonators. <i>Optics Letters</i> , 2011 , 36, 1413-5	3	44
152	Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges. <i>Nanotechnology</i> , 2004 , 15, S622-S627	3.4	44
151	Integrated Luneburg lens via ultra-strong index gradient on silicon. <i>Optics Express</i> , 2011 , 19, 20122-7	3.3	43
150	Dual-pumped degenerate Kerr oscillator in a silicon nitride microresonator. <i>Optics Letters</i> , 2015 , 40, 52	63-70	42
149	Integrated near-field thermo-photovoltaics for heat recycling. <i>Nature Communications</i> , 2020 , 11, 2545	17.4	42
148	Broadband tuning of optomechanical cavities. <i>Optics Express</i> , 2011 , 19, 2782-90	3.3	41
147	Slot waveguides with polycrystalline silicon for electrical injection. <i>Optics Express</i> , 2009 , 17, 1527-34	3.3	41
146	On-chip spectrophotometry for bioanalysis using microring resonators. <i>Biomedical Optics Express</i> , 2011 , 2, 271-7	3.5	40
145	High-speed electro-optic control of the optical quality factor of a silicon microcavity. <i>Optics Letters</i> , 2008 , 33, 1644-6	3	40
144	Low modal volume dipole-like dielectric slab resonator. <i>Optics Express</i> , 2008 , 16, 17689-94	3.3	40
143	Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2013 , 19, 8200207-8200207	3.8	39
142	Asynchronous single-shot characterization of high-repetition-rate ultrafast waveforms using a time-lens-based temporal magnifier. <i>Optics Letters</i> , 2012 , 37, 4892-4	3	39
141	Quantum interference between transverse spatial waveguide modes. <i>Nature Communications</i> , 2017 , 8, 14010	17.4	38
140	Competition between Raman and Kerr effects in microresonator comb generation. <i>Optics Letters</i> , 2017 , 42, 2786-2789	3	38
139	Imaging highly confined modes in sub-micron scale silicon waveguides using Transmission-based Near-field Scanning Optical Microscopy. <i>Optics Express</i> , 2006 , 14, 10588-95	3.3	38

138	Turn-key, high-efficiency Kerr comb source. <i>Optics Letters</i> , 2019 , 44, 4475-4478	3	38
137	Er2O3 for high-gain waveguide amplifiers. <i>Journal of Electronic Materials</i> , 2004 , 33, 809-814	1.9	37
136	Spectral phase conjugation via temporal imaging. Optics Express, 2009, 17, 20605-14	3.3	36
135	Spontaneous emergence of periodic patterns in a biologically inspired simulation of photonic structures. <i>Physical Review Letters</i> , 2006 , 96, 143904	7.4	36
134	Chip-scale blue light phased array. Optics Letters, 2020, 45, 1934-1937	3	36
133	Optical nonlinearities in high-confinement silicon carbide waveguides. <i>Optics Letters</i> , 2015 , 40, 4138-41	3	35
132	Near-Degenerate Quadrature-Squeezed Vacuum Generation on a Silicon-Nitride Chip. <i>Physical Review Letters</i> , 2020 , 124, 193601	7.4	34
131	Microresonator-based comb generation without an external laser source. <i>Optics Express</i> , 2014 , 22, 1394	I- <u>4</u> .@1	34
130	Silicon-waveguide-coupled high-Q chalcogenide microspheres. <i>Optics Express</i> , 2009 , 17, 5998-6003	3.3	33
129	Real-time vibrations of a carbon nanotube. <i>Nature</i> , 2019 , 566, 89-93	50.4	32
129	Real-time vibrations of a carbon nanotube. <i>Nature</i> , 2019 , 566, 89-93 Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects. <i>Optics Express</i> , 2016 , 24, 13044-50	50.4 3·3	32
	Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman		
128	Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects. <i>Optics Express</i> , 2016 , 24, 13044-50 First demonstration of long-haul transmission using silicon microring modulators. <i>Optics Express</i> ,	3.3	32
128	Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects. <i>Optics Express</i> , 2016 , 24, 13044-50 First demonstration of long-haul transmission using silicon microring modulators. <i>Optics Express</i> , 2010 , 18, 15544-52	3.3	32
128 127 126	Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects. <i>Optics Express</i> , 2016 , 24, 13044-50 First demonstration of long-haul transmission using silicon microring modulators. <i>Optics Express</i> , 2010 , 18, 15544-52 High-resolution spectroscopy using a frequency magnifier. <i>Optics Express</i> , 2009 , 17, 5691-7 All-optical control of an individual resonance in a silicon microresonator. <i>Physical Review Letters</i> ,	3·3 3·3 7·4	32 32 32
128 127 126	Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects. <i>Optics Express</i> , 2016 , 24, 13044-50 First demonstration of long-haul transmission using silicon microring modulators. <i>Optics Express</i> , 2010 , 18, 15544-52 High-resolution spectroscopy using a frequency magnifier. <i>Optics Express</i> , 2009 , 17, 5691-7 All-optical control of an individual resonance in a silicon microresonator. <i>Physical Review Letters</i> , 2012 , 108, 223907	3·3 3·3 7·4	32 32 32 31
128 127 126 125	Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects. <i>Optics Express</i> , 2016 , 24, 13044-50 First demonstration of long-haul transmission using silicon microring modulators. <i>Optics Express</i> , 2010 , 18, 15544-52 High-resolution spectroscopy using a frequency magnifier. <i>Optics Express</i> , 2009 , 17, 5691-7 All-optical control of an individual resonance in a silicon microresonator. <i>Physical Review Letters</i> , 2012 , 108, 223907 Tunable squeezing using coupled ring resonators on a silicon nitride chip. <i>Optics Letters</i> , 2016 , 41, 223-60 Oxidized silicon-on-insulator (OxSOI) from bulk silicon: a new photonic platform. <i>Optics Express</i> ,	3·3 3·3 7·4	32 32 32 31 30

120	Error-free transmission of microring-modulated BPSK. Optics Express, 2012, 20, 8681-8	3.3	29
119	Microresonator-based high-resolution gas spectroscopy. <i>Optics Letters</i> , 2017 , 42, 4442-4445	3	29
118	1 micros tunable delay using parametric mixing and optical phase conjugation in Si waveguides. <i>Optics Express</i> , 2009 , 17, 7004-10	3.3	28
117	Green emission from Er-doped GaN powder. <i>Applied Physics Letters</i> , 2005 , 86, 191918	3.4	28
116	Visible nonlinear photonics via high-order-mode dispersion engineering. <i>Optica</i> , 2020 , 7, 135	8.6	27
115	Dynamics of mode-coupling-induced microresonator frequency combs in normal dispersion. <i>Optics Express</i> , 2016 , 24, 28794-28803	3.3	27
114	Carrier envelope offset detection via simultaneous supercontinuum and second-harmonic generation in a silicon nitride waveguide. <i>Optics Letters</i> , 2018 , 43, 4627-4630	3	27
113	Temporal-imaging system with simple external-clock triggering. <i>Optics Express</i> , 2010 , 18, 14262-9	3.3	26
112	Broadband parametric frequency comb generation with a 1-th pump source. <i>Optics Express</i> , 2012 , 20, 26935-41	3.3	26
111	Counter-rotating cavity solitons in a silicon nitride microresonator. <i>Optics Letters</i> , 2018 , 43, 547-550	3	26
110	40-Gb/s DPSK Data Transmission Through a Silicon Microring Switch. <i>IEEE Photonics Technology Letters</i> , 2012 , 24, 473-475	2.2	25
109	Coherent, directional supercontinuum generation. <i>Optics Letters</i> , 2017 , 42, 4466-4469	3	24
108	A hybrid optical packet and wavelength selective switching platform for high-performance data center networks. <i>Optics Express</i> , 2011 , 19, 24258-67	3.3	24
107	Tunable superluminal propagation on a silicon microchip. <i>Optics Letters</i> , 2008 , 33, 2928-30	3	23
106	Focusing light in a curved-space. Optics Express, 2010, 18, 3181-6	3.3	22
105	Ultralong continuously tunable parametric delays via a cascading discrete stage. <i>Optics Express</i> , 2010 , 18, 333-9	3.3	22
104			
	Power insensitive silicon microring resonators. <i>Optics Letters</i> , 2012 , 37, 590-2	3	22

(2011-2016)

102	Quantum random number generator using a microresonator-based Kerr oscillator. <i>Optics Letters</i> , 2016 , 41, 4194-7	3	22
101	Silicon Optical Phased Array with Grating Lobe-Free Beam Formation Over 180 Degree Field of View 2018 ,		21
100	High RF carrier frequency modulation in silicon resonators by coupling adjacent free-spectral-range modes. <i>Optics Letters</i> , 2014 , 39, 1799-802	3	20
99	Continuous Wavelength Conversion of 40-Gb/s Data Over 100 nm Using a Dispersion-Engineered Silicon Waveguide. <i>IEEE Photonics Technology Letters</i> , 2011 , 23, 73-75	2.2	20
98	Exploiting Ultralow Loss Multimode Waveguides for Broadband Frequency Combs. <i>Laser and Photonics Reviews</i> , 2021 , 15, 2000353	8.3	20
97	Intermodulation Crosstalk Characteristics of WDM Silicon Microring Modulators. <i>IEEE Photonics Technology Letters</i> , 2014 , 26, 1478-1481	2.2	19
96	On-chip thermo-optic tuning of suspended microresonators. <i>Optics Express</i> , 2017 , 25, 12109-12120	3.3	19
95	Electro-optofluidics: achieving dynamic control on-chip. <i>Optics Express</i> , 2012 , 20, 22314-26	3.3	19
94	Ultrafast integrated semiconductor optical modulator based on the plasma-dispersion effect. <i>Optics Letters</i> , 2005 , 30, 2403-5	3	19
93	Demonstration of chip-based coupled degenerate optical parametric oscillators for realizing a nanophotonic spin-glass. <i>Nature Communications</i> , 2020 , 11, 4119	17.4	19
92	Frequency-Domain Quantum Interference with Correlated Photons from an Integrated Microresonator. <i>Physical Review Letters</i> , 2020 , 124, 143601	7.4	18
91	Switching light on a silicon chip. <i>Optical Materials</i> , 2005 , 27, 731-739	3.3	18
90	On-chip tunable photonic delay line. APL Photonics, 2019 , 4, 090803	5.2	16
89	Strong Nonlinear Coupling in a Si_{3}N_{4} Ring Resonator. <i>Physical Review Letters</i> , 2019 , 122, 153906	7.4	16
	·		
88	Gas-Phase Microresonator-Based Comb Spectroscopy without an External Pump Laser. <i>ACS Photonics</i> , 2018 , 5, 2780-2785	6.3	16
88	· · · · · · · · · · · · · · · · · · ·	6.3	16 16
	Photonics, 2018, 5, 2780-2785 UWB monocycle pulse generation using two-photon absorption in a silicon waveguide. Optics		

84	Eliminating anchor loss in optomechanical resonators using elastic wave interference. <i>Applied Physics Letters</i> , 2014 , 105, 051904	3.4	14
83	Deposited low temperature silicon GHz modulator. <i>Optics Express</i> , 2013 , 21, 26688-92	3.3	14
82	Purification and mechanical nanosizing of Eu-doped GaN. Journal of Crystal Growth, 2009, 311, 4402-44	07 .6	14
81	Demonstration of All-Optical Multi-Wavelength Message Routing for Silicon Photonic Networks 2008 ,		14
80	Colorless Optical Network Unit Based on Silicon Photonic Components for WDM PON. <i>IEEE Photonics Technology Letters</i> , 2012 , 24, 1372-1374	2.2	13
79	Wavelength conversion and unicast of 10-Gb/s data spanning up to 700 nm using a silicon nanowaveguide. <i>Optics Express</i> , 2012 , 20, 6488-95	3.3	13
78	Chip-based frequency comb sources for optical coherence tomography. <i>Optics Express</i> , 2019 , 27, 19896	5-39905	5 13
77	Femtosecond exciton dynamics in WSe optical waveguides. <i>Nature Communications</i> , 2020 , 11, 3567	17.4	13
76	Methods to achieve ultra-high quality factor silicon nitride resonators. APL Photonics, 2021, 6, 071101	5.2	13
75	12.5 Gbit/s silicon micro-ring silicon modulators 2007 ,		12
75 74	12.5 Gbit/s silicon micro-ring silicon modulators 2007 , 2D beam steerer based on metalens on silicon photonics. <i>Optics Express</i> , 2021 , 29, 854-864	3.3	12
		3-3	
74	2D beam steerer based on metalens on silicon photonics. <i>Optics Express</i> , 2021 , 29, 854-864 Experimental characterization of the optical-power upper bound in a silicon microring modulator	3.3	12
74 73	2D beam steerer based on metalens on silicon photonics. <i>Optics Express</i> , 2021 , 29, 854-864 Experimental characterization of the optical-power upper bound in a silicon microring modulator 2012 , Ultrafast Measurements Using a Silicon-Chip-Based Temporal Lens. <i>Optics and Photonics News</i> ,		12
74 73 72	2D beam steerer based on metalens on silicon photonics. <i>Optics Express</i> , 2021 , 29, 854-864 Experimental characterization of the optical-power upper bound in a silicon microring modulator 2012 , Ultrafast Measurements Using a Silicon-Chip-Based Temporal Lens. <i>Optics and Photonics News</i> , 2009 , 20, 40	1.9	12 11 11
74 73 72 71	2D beam steerer based on metalens on silicon photonics. <i>Optics Express</i> , 2021 , 29, 854-864 Experimental characterization of the optical-power upper bound in a silicon microring modulator 2012 , Ultrafast Measurements Using a Silicon- Chip-Based Temporal Lens. <i>Optics and Photonics News</i> , 2009 , 20, 40 Plug-and-play fiber to waveguide connector. <i>Optics Express</i> , 2019 , 27, 20305-20310 Observation of Arnold Tongues in Coupled Soliton Kerr Frequency Combs. <i>Physical Review Letters</i> ,	1.9 3·3	12 11 11
74 73 72 71 70	2D beam steerer based on metalens on silicon photonics. <i>Optics Express</i> , 2021 , 29, 854-864 Experimental characterization of the optical-power upper bound in a silicon microring modulator 2012 , Ultrafast Measurements Using a Silicon- Chip-Based Temporal Lens. <i>Optics and Photonics News</i> , 2009 , 20, 40 Plug-and-play fiber to waveguide connector. <i>Optics Express</i> , 2019 , 27, 20305-20310 Observation of Arnold Tongues in Coupled Soliton Kerr Frequency Combs. <i>Physical Review Letters</i> , 2019 , 123, 153901	1.9 3·3	12 11 11 11 10

66	Breakthroughs in Nonlinear Silicon Photonics 2011. IEEE Photonics Journal, 2012, 4, 601-606	1.8	9
65	On-chip generation of high-intensity short optical pulses using dynamic microcavities. <i>Optics Letters</i> , 2009 , 34, 2315-7	3	9
64	Performance scaling of a 10-GHz solid-state laser enabling self-referenced CEO frequency detection without amplification. <i>Optics Express</i> , 2020 , 28, 12755-12770	3.3	9
63	Robust, efficient, micrometre-scale phase modulators at visible wavelengths. <i>Nature Photonics</i> , 2021 , 15, 908-913	33.9	9
62	Microphotonic needle for minimally invasive endoscopic imaging with sub-cellular resolution. <i>Scientific Reports</i> , 2018 , 8, 10756	4.9	8
61	Broadband Silicon Photonic Packet-Switching Node for Large-Scale Computing Systems. <i>IEEE Photonics Technology Letters</i> , 2012 , 24, 688-690	2.2	8
60	Simultaneous wavelength conversion of ASK and DPSK signals based on four-wave-mixing in dispersion engineered silicon waveguides. <i>Optics Express</i> , 2011 , 19, 12172-9	3.3	8
59	Silicon Microring Resonator-Based Broadband Comb Switch for Wavelength-Parallel Message Routing. <i>Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS</i> , 2007 ,		8
58	Luminescence dynamics and waveguide applications of europium doped gallium nitride powder. <i>Applied Physics Letters</i> , 2006 , 89, 111912	3.4	8
57	Silicon-Microresonator-Based Mid-Infrared Dual-Comb Source 2016 ,		8
56	3D microphotonic probe for high resolution deep tissue imaging. <i>Optics Express</i> , 2019 , 27, 22352-22362	3.3	7
55	On-chip supercontinuum optical trapping and resonance excitation of microspheres. <i>Optics Letters</i> , 2010 , 35, 1626-8	3	7
54	Controlling thermo-optic response in microresonators using bimaterial cantilevers. <i>Optics Letters</i> , 2015 , 40, 103-6	3	6
53	Absorption bleaching by stimulated emission in erbium-doped silicon-rich silicon nitride waveguides. <i>Optics Letters</i> , 2011 , 36, 4-6	3	6
52	Introduction to the Special Issue on Silicon Photonics. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2010 , 16, 4-5	3.8	6
51	Integrated Graphene Electro-Optic Phase Modulator 2017,		6
50	PINE: Photonic Integrated Networked Energy efficient datacenters (ENLITENED Program) [Invited]. Journal of Optical Communications and Networking, 2020 , 12, 443	4.1	6
49	High-performance integrated graphene electro-optic modulator at cryogenic temperature. Nanophotonics, 2020, 10, 99-104	6.3	6

48	Parametric sideband generation in CMOS-compatible oscillators from visible to telecom wavelengths. <i>Optica</i> , 2021 , 8, 316	8.6	6
47	Conversion efficiency of soliton Kerr combs. <i>Optics Letters</i> , 2021 , 46, 3657-3660	3	6
46	Millimeter-scale chip-based supercontinuum generation for optical coherence tomography. <i>Science Advances</i> , 2021 , 7, eabg8869	14.3	6
45	Study of nanosecond pulsed magnetic fields using temporally resolved Faraday rotation through a magneto-optical waveguide. <i>Optics Letters</i> , 2009 , 34, 1009-11	3	5
44	Intermodulation crosstalk from silicon microring modulators in wavelength-parallel photonic networks-on-chip 2010 ,		4
43	Thermally active 4½ non-blocking switch for networks-on-chip 2008,		4
42	WDM Silicon Modulators Based on Micro-ring Resonators 2006 ,		4
41	Robust Hybrid III-V/Si3N4 Laser with kHz-Linewidth and GHz-Pulling Range 2020 ,		4
40	Microfluidic mid-infrared spectroscopy via microresonator-based dual-comb source. <i>Optics Letters</i> , 2019 , 44, 4259-4262	3	4
39	High carrier mobility in graphene doped using a monolayer of tungsten oxyselenide. <i>Nature Electronics</i> , 2021 , 4, 731-739	28.4	4
38	Tunable single-mode chip-scale mid-infrared laser. Communications Physics, 2021, 4,	5.4	4
37	Fast wavelength locking of a microring resonator 2014 ,		3
36	Photonic Needles for Light Delivery in Deep Tissue-like Media. Scientific Reports, 2017, 7, 5627	4.9	3
35	Direction-dependent optical modes in nanoscale silicon waveguides. <i>Optics Express</i> , 2011 , 19, 18380-92	3.3	3
34	50 Gbit/s wavelength division multiplexing using silicon microring modulators 2009,		3
33	High-Speed 2½ switch for multi-wavelength message routing in on-chip silicon photonic networks 2008 ,		3
32	250 Gb/s multi-wavelength operation of microring resonator-based broadband comb switch for silicon photonic networks-on-chip 2008 ,		3
31	Light Guiding in Low Index Materials using High-Index-Contrast Waveguides. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 797, 178		3

(2007-2022)

30	Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides <i>Nature Communications</i> , 2022 , 13, 542	17.4	3
29	Synchronization of nonsolitonic Kerr combs. <i>Science Advances</i> , 2021 , 7, eabi4362	14.3	3
28	Soliton-effect compression of picosecond pulses on a photonic chip. <i>Optics Letters</i> , 2021 , 46, 4706-4709	13	3
27	Demonstration of 1.28-Tb/s transmission in next-generation nanowires for photonic networks-on-chip 2010 ,		2
26	10-Gb/s Access Network Architecture Based on Micro-Ring Modulators With Colorless ONU and Mitigated Rayleigh Backscattering. <i>IEEE Photonics Technology Letters</i> , 2011 , 23, 914-916	2.2	2
25	Silicon photonic interconnect with micrometer-scale devices 2009,		2
24	High Performance Photonics on Silicon 2008,		2
23	Low-power optical regeneration using four-wave mixing in a silicon chip 2008,		2
22	Magnetic Field Measurements in Wire-Array Z-Pinches using Magneto-Optically Active Waveguides 2009 ,		2
21	3C-SiC modulator for high-speed integrated photonics. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 799, 158		2
20	Luminescence and lifetime properties of europium doped gallium nitride compatible with CMOS technology. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 866, 71		2
19	High Quality Factor PECVD Si3N4 Ring Resonators Compatible with CMOS Process 2019,		2
18	Micron-scale, Efficient, Robust Phase Modulators in the Visible 2019 ,		2
17	Nonlinear optics in photonics nanowires 2009,		1
16	1 🛭 tunable delay using parametric mixing and optical phase conjugation in Si waveguides: reply. <i>Optics Express</i> , 2009 , 17, 16029	3.3	1
15	Broadband hitless silicon electro-optic switch for optical networkson-chip 2009,		1
14	Polysilicon-on-Insulator Photonic Devices 2007,		1
13	All Optical Ultrafast Broadband Silicon Switch 2007,		1

12	Demonstrated 4 Gbps Silicon Photonic Integrated Parallel Electronic to WDM Interface 2007,	1
11	Integrated Nanophotonic Platform for High Bandwidth and High Resolution Optogenetic Excitation 2016 ,	1
10	Robust Miniature Pure-Phase Modulators at $k = 488$ nm 2020 ,	1
9	Optomechanical synchronization across multi-octave frequency spans. <i>Nature Communications</i> , 2021 , 12, 5625	17.4 1
8	Slot waveguide cavities for electrically-pumped silicon-based light sources 2008,	1
7	Universal Conversion Efficiency Scaling with Free-Spectral-Range for Soliton Kerr Combs 2020 ,	1
6	Electron-Beam Directed Layer-by-Layer Assembly of Dendrimer Scaffold for Biomolecule Patterning. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 921, 1	
5	Silicon Micro-Photonic Structure for Ultra-Sensitive Biosensing. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 797, 31	
4	Raman Gain in Silicon Using Highly Confined Waveguide Structure. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 832, 146	
3	Visible nonlinear photonics via high-order-mode dispersion engineering: publisher∄ note. <i>Optica</i> , 2020 , 7, 198	8.6
2	Broadband enhancement of thermal radiation. <i>Optics Express</i> , 2019 , 27, A818-A828	3.3
1	Nanophotonic devices for power-efficient communications 2020 , 103-141	