
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8570942/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DJ″ depletion prevents immunoaging in Tâ€cell compartments. EMBO Reports, 2022, 23, e53302.	2.0	9
2	Neurodegeneration and neuroinflammation are linked, but independent of alphaâ€synuclein inclusions, in a seeding/spreading mouse model of Parkinson's disease. Glia, 2022, 70, 935-960.	2.5	30
3	PARK7/DJ-1 promotes pyruvate dehydrogenase activity and maintains Treg homeostasis during ageing. Nature Metabolism, 2022, 4, 589-607.	5.1	18
4	Deep sequencing of sncRNAs reveals hallmarks and regulatory modules of the transcriptome during Parkinson's disease progression. Nature Aging, 2021, 1, 309-322.	5.3	26
5	Identification of VIMP as a gene inhibiting cytokine production in human CD4+ effector TÂcells. IScience, 2021, 24, 102289.	1.9	14
6	Standard Peripheral Blood Mononuclear Cell Cryopreservation Selectively Decreases Detection of Nine Clinically Relevant T Cell Markers. ImmunoHorizons, 2021, 5, 711-720.	0.8	10
7	Quantitative trait locus mapping identifies a locus linked toÂstriatal dopamine and points to collagen <scp>IV</scp> alphaâ€6 chain asÂa novel regulator of striatal axonal branching in mice. Genes, Brain and Behavior, 2021, 20, e12769.	1.1	2
8	COVID19 Disease Map, a computational knowledge repository of virus–host interaction mechanisms. Molecular Systems Biology, 2021, 17, e10387.	3.2	53
9	A rare loss-of-function variant of ADAM17 is associated with late-onset familial Alzheimer disease. Molecular Psychiatry, 2020, 25, 629-639.	4.1	42
10	Common diseases alter the physiological age-related blood microRNA profile. Nature Communications, 2020, 11, 5958.	5.8	46
11	Mitochondria interaction networks show altered topological patterns in Parkinson's disease. Npj Systems Biology and Applications, 2020, 6, 38.	1.4	7
12	ROS networks: designs, aging, Parkinson's disease and precision therapies. Npj Systems Biology and Applications, 2020, 6, 34.	1.4	50
13	COVID-19 Disease Map, building a computational repository of SARS-CoV-2 virus-host interaction mechanisms. Scientific Data, 2020, 7, 136.	2.4	99
14	Parkinson's disease-associated alterations of the gut microbiome predict disease-relevant changes in metabolic functions. BMC Biology, 2020, 18, 62.	1.7	122
15	Evaluating the Use of Circulating MicroRNA Profiles for Lung Cancer Detection in Symptomatic Patients. JAMA Oncology, 2020, 6, 714.	3.4	84
16	A comprehensive and comparative phenotypic analysis of the collaborative founder strains identifies new and known phenotypes. Mammalian Genome, 2020, 31, 30-48.	1.0	22
17	From Diagnosing Diseases to Predicting Diseases. , 2019, , 95-103.		0
18	Connecting environmental exposure and neurodegeneration using cheminformatics and high resolution mass spectrometry: potential and challenges. Environmental Sciences: Processes and Impacts, 2019, 21, 1426-1445.	1.7	13

#	Article	IF	CITATIONS
19	A Recurrent Missense Variant in AP2M1 Impairs Clathrin-Mediated Endocytosis and Causes Developmental and Epileptic Encephalopathy. American Journal of Human Genetics, 2019, 104, 1060-1072.	2.6	78
20	MICâ€MAC: An automated pipeline for highâ€ŧhroughput characterization and classification of threeâ€dimensional microglia morphologies in mouse and human postmortem brain samples. Glia, 2019, 67, 1496-1509.	2.5	36
21	Genes associated with Parkinson's disease respond to increasing polychlorinated biphenyl levels in the blood of healthy females. Environmental Pollution, 2019, 250, 107-117.	3.7	3
22	Workshop Report: Systems Genetics of Neurodegenerative Disease, a Summer School in Systems Medicine, 25th Augustâ''1st September 2017. Frontiers in Genetics, 2019, 10, 29.	1.1	0
23	Large-scale validation of miRNAs by disease association, evolutionary conservation and pathway activity. RNA Biology, 2019, 16, 93-103.	1.5	5
24	Presenting and sharing clinical data using the eTRIKS Standards Master Tree for tranSMART. Bioinformatics, 2019, 35, 1562-1565.	1.8	0
25	Community-driven roadmap for integrated disease maps. Briefings in Bioinformatics, 2019, 20, 659-670.	3.2	48
26	A roadmap towards personalized immunology. Npj Systems Biology and Applications, 2018, 4, 9.	1.4	43
27	Exome-wide analysis of mutational burden in patients with typical and atypical Rolandic epilepsy. European Journal of Human Genetics, 2018, 26, 258-264.	1.4	22
28	Rare ABCA7 variants in 2 German families with Alzheimer disease. Neurology: Genetics, 2018, 4, e224.	0.9	12
29	The Luxembourg Parkinson's Study: A Comprehensive Approach for Stratification and Early Diagnosis. Frontiers in Aging Neuroscience, 2018, 10, 326.	1.7	57
30	Single ell transcriptomics reveals distinct inflammationâ€induced microglia signatures. EMBO Reports, 2018, 19, .	2.0	186
31	From hype to reality: data science enabling personalized medicine. BMC Medicine, 2018, 16, 150.	2.3	278
32	Systems medicine disease maps: community-driven comprehensive representation of disease mechanisms. Npj Systems Biology and Applications, 2018, 4, 21.	1.4	84
33	Recessive mutations in <i>SLC35A3</i> cause early onset epileptic encephalopathy with skeletal defects. American Journal of Medical Genetics, Part A, 2017, 173, 1119-1123.	0.7	16
34	Viva Europa, a Land of Excellence in Research and Innovation for Health and Wellbeing. Progress in Preventive Medicine (New York, N Y), 2017, 2, e006.	0.7	6
35	The P4 Health Spectrum – A Predictive, Preventive, Personalized and Participatory Continuum for Promoting Healthspan. Progress in Cardiovascular Diseases, 2017, 59, 506-521.	1.6	178
36	Rare GABRA3 variants are associated with epileptic seizures, encephalopathy and dysmorphic features. Brain, 2017, 140, 2879-2894.	3.7	33

#	Article	IF	CITATIONS
37	The P4 Health Spectrum – A Predictive, Preventive, Personalized and Participatory Continuum for Promoting Healthspan. Progress in Preventive Medicine (New York, N Y), 2017, 2, e0002.	0.7	10
38	Gene Regulatory Network Inference of Immunoresponsive Gene 1 (IRG1) Identifies Interferon Regulatory Factor 1 (IRF1) as Its Transcriptional Regulator in Mammalian Macrophages. PLoS ONE, 2016, 11, e0149050.	1.1	66
39	Integration and Visualization of Translational Medicine Data for Better Understanding of Human Diseases. Big Data, 2016, 4, 97-108.	2.1	41
40	Similar α‣ynuclein staining in the colon mucosa in patients with Parkinson's disease and controls. Movement Disorders, 2016, 31, 1567-1570.	2.2	48
41	MINERVA—a platform for visualization and curation of molecular interaction networks. Npj Systems Biology and Applications, 2016, 2, 16020.	1.4	68
42	Loss of SYNJ1 dual phosphatase activity leads to early onset refractory seizures and progressive neurological decline. Brain, 2016, 139, 2420-2430.	3.7	70
43	Making sense of big data in health research: Towards an EU action plan. Genome Medicine, 2016, 8, 71.	3.6	190
44	Influenza H3N2 infection of the collaborative cross founder strains reveals highly divergent host responses and identifies a unique phenotype in CAST/EiJ mice. BMC Genomics, 2016, 17, 143.	1.2	48
45	Accelerating the Development and Validation of New Value-Based Diagnostics by Leveraging Biobanks. Public Health Genomics, 2016, 19, 160-169.	0.6	6
46	Neurological Diseases from a Systems Medicine Point of View. Methods in Molecular Biology, 2016, 1386, 221-250.	0.4	3
47	Toward Omics-Based, Systems Biomedicine, and Path and Drug Discovery Methodologies for Depression-Inflammation Research. Molecular Neurobiology, 2016, 53, 2927-2935.	1.9	40
48	Platelet mitochondrial membrane potential in Parkinson's disease. Annals of Clinical and Translational Neurology, 2015, 2, 67-73.	1.7	12
49	Global implementation of genomic medicine: We are not alone. Science Translational Medicine, 2015, 7, 290ps13.	5.8	146
50	A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51. Nature Communications, 2015, 6, 8829.	5.8	130
51	Critical transitions in chronic disease: transferring concepts from ecology to systems medicine. Current Opinion in Biotechnology, 2015, 34, 48-55.	3.3	86
52	The Mouse Brain Metabolome. American Journal of Pathology, 2015, 185, 1699-1712.	1.9	31
53	Recessive mutations in <i>SLC13A5</i> result in a loss of citrate transport and cause neonatal epilepsy, developmental delay and teeth hypoplasia. Brain, 2015, 138, 3238-3250.	3.7	96
54	Systems genomics evaluation of the SH-SY5Y neuroblastoma cell line as a model for Parkinson's disease. BMC Genomics, 2014, 15, 1154.	1.2	126

#	Article	IF	CITATIONS
55	Integrating Pathways of Parkinson's Disease in a Molecular Interaction Map. Molecular Neurobiology, 2014, 49, 88-102.	1.9	231
56	Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes. Nature Genetics, 2014, 46, 1327-1332.	9.4	178
57	Neurodegeneration by Activation of the Microglial Complement-Phagosome Pathway. Journal of Neuroscience, 2014, 34, 8546-8556.	1.7	192
58	De Novo Mutations in Synaptic Transmission Genes Including DNM1 Cause Epileptic Encephalopathies. American Journal of Human Genetics, 2014, 95, 360-370.	2.6	388
59	Systems Medicine Approaches for the Definition of Complex Phenotypes in Chronic Diseases and Ageing. From Concept to Implementation and Policies. Current Pharmaceutical Design, 2014, 20, 5928-5944.	0.9	63
60	A Systems Medicine Clinical Platform for Understanding and Managing Non- Communicable Diseases. Current Pharmaceutical Design, 2014, 20, 5945-5956.	0.9	32
61	Functional Genomics, Proteomics, Metabolomics and Bioinformatics for Systems Biology. , 2013, , 3-41.		5
62	Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7820-7825.	3.3	765
63	The role of regulatory T cells in neurodegenerative diseases. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 153-180.	6.6	58
64	The hallmarks of <scp>P</scp> arkinson's disease. FEBS Journal, 2013, 280, 5981-5993.	2.2	214
65	Computational Infrastructures for Data and Knowledge Management in Systems Biology. , 2013, , 377-397.		2
66	On Different Aspects of Network Analysis in Systems Biology. , 2013, , 181-207.		3
67	Understanding complexity in neurodegenerative diseases: in silico reconstruction of emergence. Frontiers in Physiology, 2012, 3, 291.	1.3	16
68	PLAU inferred from a correlation network is critical for suppressor function of regulatory T cells. Molecular Systems Biology, 2012, 8, 624.	3.2	54
69	From Systems Biology to Systems Biomedicine. Current Opinion in Biotechnology, 2012, 23, 604-608.	3.3	24
70	Revolutionizing medicine in the 21 st century through systems approaches. Biotechnology Journal, 2012, 7, 992-1001.	1.8	225
71	Emergence of the silicon human and network targeting drugs. European Journal of Pharmaceutical Sciences, 2012, 46, 190-197.	1.9	32
72	Systems medicine and integrated care to combat chronic noncommunicable diseases. Genome Medicine, 2011, 3, 43.	3.6	181

#	Article	IF	CITATIONS
73	Parkinson's disease mouse models in translational research. Mammalian Genome, 2011, 22, 401-419.	1.0	65
74	"4D Biology for health and disease―workshop report. New Biotechnology, 2011, 28, 291-293.	2.4	2
75	Diseases as network perturbations. Current Opinion in Biotechnology, 2010, 21, 566-571.	3.3	167
76	A nonâ€functioning vitamin D receptor predisposes to leukaemoid reactions in mice. Hematological Oncology, 2010, 28, 185-191.	0.8	9
77	Finding and sharing: new approaches to registries of databases and services for the biomedical sciences. Database: the Journal of Biological Databases and Curation, 2010, 2010, baq014-baq014.	1.4	12
78	GARP: a key receptor controlling FOXP3 in human regulatory T cells. Journal of Cellular and Molecular Medicine, 2009, 13, 3343-3357.	1.6	113
79	Reverse engineering and verification of gene networks: Principles, assumptions, and limitations of present methods and future perspectives. Journal of Biotechnology, 2009, 144, 190-203.	1.9	67
80	Humanized Mice for Modeling Human Infectious Disease: Challenges, Progress, and Outlook. Cell Host and Microbe, 2009, 6, 5-9.	5.1	202
81	Dynamic cumulative activity of transcription factors as a mechanism of quantitative gene regulation. Genome Biology, 2007, 8, R181.	13.9	11
82	Molecular basis for skeletal variation: insights from developmental genetic studies in mice. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2007, 80, 425-450.	1.4	8
83	Der neue VBIO: Weichenstellungen für die Zukunft der Biowissenschaften. Biologie in Unserer Zeit, 2007, 37, 275-275.	0.3	0
84	Sudden and unexpected. Nature Genetics, 2007, 39, 1422-1423.	9.4	0
85	From mouse genetics to systems biology. Mammalian Genome, 2007, 18, 383-388.	1.0	4
86	1Â,25-dihydroxyvitamin D3 is a potent suppressor of interferon Â-mediated macrophage activation. Blood, 2005, 106, 4351-4358.	0.6	221
87	The European dimension for the mouse genome mutagenesis program. Nature Genetics, 2004, 36, 925-927.	9.4	195
88	Reduced intragraft mRNA expression of matrix metalloproteinases Mmp3, Mmp12, Mmp13 and Adam8, and diminished transplant arteriosclerosis in Ccr5-deficient mice. European Journal of Immunology, 2004, 34, 2568-2578.	1.6	38
89	Maintaining Your Immune System–One Method for Enhanced Longevity. Science of Aging Knowledge Environment: SAGE KE, 2004, 2004, 2pe-2.	0.9	4
90	Mice, microbes and models of infection. Nature Reviews Genetics, 2003, 4, 195-205.	7.7	75

#	Article	IF	CITATIONS
91	Targeted Disruption of the Peptide Transporter Pept2 Gene in Mice Defines Its Physiological Role in the Kidney. Molecular and Cellular Biology, 2003, 23, 3247-3252.	1.1	96
92	In Situ Gene Expression Analysis During BMP2-induced Ectopic Bone Formation in Mice Shows Simultaneous Endochondral and Intramembranous Ossification. Growth Factors, 2003, 20, 197-210.	0.5	33
93	Impaired insulin secretory capacity in mice lacking a functional vitamin D receptor. FASEB Journal, 2003, 17, 1-14.	0.2	360
94	Pax1 and Pax9 activate Bapx1 to induce chondrogenic differentiation in the sclerotome. Development (Cambridge), 2003, 130, 473-482.	1.2	128
95	Hydrogen Peroxide-Mediated Killing of Caenorhabditis elegans by Streptococcus pyogenes. Infection and Immunity, 2002, 70, 5202-5207.	1.0	87
96	Deletion of Deoxyribonucleic Acid Binding Domain of the Vitamin D Receptor Abrogates Genomic and Nongenomic Functions of Vitamin D. Molecular Endocrinology, 2002, 16, 1524-1537.	3.7	267
97	Thymopoiesis requiresPax9 function in thymic epithelial cells. European Journal of Immunology, 2002, 32, 1175-1181.	1.6	74
98	Conditional inactivation ofSox9: A mouse model for campomelic dysplasia. Genesis, 2002, 32, 121-123.	0.8	99
99	Genetic and molecular control of folate-homocysteine metabolism in mutant mice. Mammalian Genome, 2002, 13, 259-267.	1.0	10
100	V76D mutation in a conserved gD-crystallin region leads to dominant cataracts in mice. Mammalian Genome, 2002, 13, 452-455.	1.0	23
101	Respiratory mechanics in mice: strain and sex specific differences. Acta Physiologica Scandinavica, 2002, 174, 367-375.	2.3	58
102	Progressive loss of PAX9 expression correlates with increasing malignancy of dysplastic and cancerous epithelium of the human oesophagus. Journal of Pathology, 2002, 197, 293-297.	2.1	60
103	Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nature Genetics, 2002, 30, 257-258.	9.4	246
104	Characterization of a Mutation in the Lens-specific MP70 Encoding Gene of the Mouse Leading to a Dominant Cataract. Experimental Eye Research, 2001, 73, 867-876.	1.2	52
105	The battle of two genomes: genetics of bacterial host/pathogen interactions in mice. Mammalian Genome, 2001, 12, 261-271.	1.0	52
106	Comparative analysis of the genomic organization of Pax9 and its conserved physical association with Nkx2-9 in the human, mouse, and pufferfish genomes. Mammalian Genome, 2001, 12, 232-237.	1.0	17
107	ENU MUTAGENESIS: Analyzing Gene Function in Mice. Annual Review of Genomics and Human Genetics, 2001, 2, 463-492.	2.5	122
108	The Notch ligand Jagged1 is required for inner ear sensory development. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3873-3878.	3.3	206

#	Article	IF	CITATIONS
109	Ethylnitrosourea-Induced Mutation in Mice Leads to the Expression of a Novel Protein in the Eye and to Dominant Cataracts. Genetics, 2001, 157, 1313-1320.	1.2	15
110	Functional Annotation of Mouse Genome Sequences. Science, 2001, 291, 1251-1255.	6.0	125
111	Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genetics, 2000, 25, 444-447.	9.4	658
112	From parathyroid to thymus, via glial cells. Nature Medicine, 2000, 6, 860-861.	15.2	3
113	Large-Scale N -Ethyl-N -Nitrosourea Mutagenesis of Mice - from Phenotypes to Genes. Experimental Physiology, 2000, 85, 635-643.	0.9	13
114	The large-scale Munich ENU-mouse-mutagenesis screen. Mammalian Genome, 2000, 11, 507-510.	1.0	40
115	Identification of immunological relevant phenotypes in ENU mutagenized mice. Mammalian Genome, 2000, 11, 526-527.	1.0	22
116	Screening for dysmorphological abnormalities—a powerful tool to isolate new mouse mutants. Mammalian Genome, 2000, 11, 528-530.	1.0	38
117	The clinical-chemical screen in the Munich ENU Mouse Mutagenesis Project: screening for clinically relevant phenotypes. Mammalian Genome, 2000, 11, 543-546.	1.0	53
118	The biochemical metabolite screen in the Munich ENU Mouse Mutagenesis Project: determination of amino acids and acylcarnitines by tandem mass spectrometry. Mammalian Genome, 2000, 11, 547-551.	1.0	31
119	Large-scale N-ethyl-N-nitrosourea mutagenesis of mice - from phenotypes to genes. Experimental Physiology, 2000, 85, 635-643.	0.9	17
120	A mouse model for valproate teratogenicity: parental effects, homeotic transformations, and altered HOX expression. Human Molecular Genetics, 2000, 9, 227-236.	1.4	103
121	From Developmental Biology to Developmental Toxicology. Annals of the New York Academy of Sciences, 2000, 919, 239-245.	1.8	0
122	Tailchaser (Tlc): a new mouse mutation affecting hair bundle differentiation and hair cell survival. Journal of Neurocytology, 1999, 28, 969-985.	1.6	37
123	Reliable recovery of inbred mouse lines using cryopreserved spermatozoa. Mammalian Genome, 1999, 10, 773-776.	1.0	38
124	Teeth: where and how to make them. Trends in Genetics, 1999, 15, 59-65.	2.9	331
125	Spatio-temporal distribution of chondromodulin-I mRNA in the chicken embryo: Expression during cartilage development and formation of the heart and eye. , 1999, 216, 233-243.		30
126	Cadherin-11 is highly expressed in rhabdomyosarcomas and during differentiation of myoblastsin		19

vitro. , 1999, 187, 164-172.

#	Article	IF	CITATIONS
127	Zic1 regulates the patterning of vertebral arches in cooperation with Gli3. Mechanisms of Development, 1999, 89, 141-150.	1.7	76
128	Overexpression of activin A in the skin of transgenic mice reveals new activities of activin in epidermal morphogenesis, dermal fibrosis and wound repair. EMBO Journal, 1999, 18, 5205-5215.	3.5	195
129	Mutation in the βA3/A1-Crystallin Encoding Gene Cryba1 Causes a Dominant Cataract in the Mouse. Genomics, 1999, 62, 67-73.	1.3	67
130	Notochord-Dependent Expression of MFH1 and PAX1 Cooperates to Maintain the Proliferation of Sclerotome Cells during the Vertebral Column Development. Developmental Biology, 1999, 210, 15-29.	0.9	95
131	Whose law for sharing research tools?. Nature, 1998, 396, 509-509.	13.7	0
132	Large scale ENU screens in the mouse: genetics meets genomics. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1998, 400, 25-32.	0.4	108
133	Inhibitory action of BMPs onPax1 expression and on shoulder girdle formation during limb development. Developmental Dynamics, 1998, 213, 199-206.	0.8	27
134	The SOX10 / Sox10 gene from human and mouse: sequence, expression, and transactivation by the encoded HMG domain transcription factor. Human Genetics, 1998, 103, 115-123.	1.8	129
135	A locus for radiation-induced gastroschisis on mouse Chromosome 7. Mammalian Genome, 1998, 9, 995-997.	1.0	35
136	Pax genes and organogenesis: <i>Pax9</i> meets tooth development. European Journal of Oral Sciences, 1998, 106, 38-43.	0.7	83
137	Antagonistic Interactions between FGF and BMP Signaling Pathways: A Mechanism for Positioning the Sites of Tooth Formation. Cell, 1997, 90, 247-255.	13.5	560
138	Pax genes and organogenesis. BioEssays, 1997, 19, 755-765.	1.2	360
139	Pax Genes and Skeletal Development. Annals of the New York Academy of Sciences, 1996, 785, 27-33.	1.8	25
140	Pax genes and sclerotome development. Seminars in Cell and Developmental Biology, 1996, 7, 129-136.	2.3	25
141	Expression of AvianPax1andPax9Is Intrinsically Regulated in the Pharyngeal Endoderm, but Depends on Environmental Influences in the Paraxial Mesoderm. Developmental Biology, 1996, 178, 403-417.	0.9	102
142	Analysis of limb patterning in BMP-7-deficient mice. Genesis, 1996, 19, 43-50.	3.1	51
143	Pax-1, a regulator of sclerotome development is induced by notochord and floor plate signals in avian embryos. Anatomy and Embryology, 1995, 191, 297-310.	1.5	105
144	Interaction between undulated and Patch leads to an extreme form of spina bifida in double-mutant mice. Nature Genetics, 1995, 11, 60-63.	9.4	75

#	Article	IF	CITATIONS
145	A gene for autosomal dominant sacral agenesis maps to the holoprosencephaly region at 7q36. Nature Genetics, 1995, 11, 93-95.	9.4	150
146	Cloning and Expression Analysis of a Novel Mesodermally Expressed Cadherin. Developmental Biology, 1995, 169, 337-346.	0.9	132
147	Characterization and Developmental Expression of Pax9, a Paired-Box-Containing Gene Related to Pax1. Developmental Biology, 1995, 170, 701-716.	0.9	266
148	The ventralizing effect of the notochord on somite differentiation in chick embryos. Anatomy and Embryology, 1993, 188, 239-45.	1.5	163
149	Fine genetic mapping of the proximal part of mouse Chromosome 2 excludes Pax-8 as a candidate gene for Danforth's short tail (Sd). Mammalian Genome, 1993, 4, 324-327.	1.0	11
150	Mapping of the Mod-1 locus on mouse Chromosome 9. Mammalian Genome, 1993, 4, 333-337.	1.0	3
151	A new Pax gene, Pax-9, maps to mouse Chromosome 12. Mammalian Genome, 1993, 4, 354-358.	1.0	50
152	The genetic map around the tail kinks (tk) locus on mouse Chromosome 9. Mammalian Genome, 1993, 4, 560-564.	1.0	2
153	The molecular and genetic analysis of mouse development. , 1993, , 35-41.		0
154	PAX1, a member of the paired box-containing class of developmental control genes, is mapped to human chromosome 20p11.2 by in Situ hybridization (ISH and FISH). Genomics, 1992, 14, 740-744.	1.3	28
155	Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature, 1992, 355, 635-636.	13.7	688
156	The molecular and genetic analysis of mouse development. FEBS Journal, 1992, 204, 5-11.	0.2	6
157	Pax: A murine multigene family of paired box-containing genes. Genomics, 1991, 11, 424-434.	1.3	424
158	Development(s) in mouse genetics. Biochemistry and Cell Biology, 1990, 68, 404-407.	0.9	0
159	Variations of cervical vertebrate after expression of a Hox-1.1 transgene in mice. Cell, 1990, 61, 301-308.	13.5	382
160	Structure, expression and chromosomal localization of Zfp-1, a murine zinc finger protein gene. Nucleic Acids Research, 1989, 17, 10427-10438.	6.5	28
161	Craniofacial abnormalities induced by ectopic expression of the homeobox gene Hox-1.1 in transgenic mice. Cell, 1989, 58, 337-347.	13.5	264
162	Moratorium call. Nature, 1988, 334, 560-560.	13.7	1

#	Article	IF	CITATIONS
163	undulated, a mutation affecting the development of the mouse skeleton, has a point mutation in the paired box of Pax 1. Cell, 1988, 55, 531-535.	13.5	332
164	Murine genes with homology to Drosophila segmentation genes. Development (Cambridge), 1988, 104, 181-186.	1.2	35
165	Degree of methylation of transgenes is dependent on gamete of origin. Nature, 1987, 328, 251-254.	13.7	411
166	COVID-19 and beyond:Âa call for action andÂaudacious solidarity to all the citizens and nations,Âit is humanity's fight. F1000Research, 0, 9, 1130.	0.8	3