## Francisco José Arnau MartÃ-nez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8570711/publications.pdf Version: 2024-02-01



Francisco José Arnau

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Analysis of temperature and altitude effects on the Global Energy Balance during WLTC. International<br>Journal of Engine Research, 2022, 23, 1831-1849.                                                                                                          | 1.4 | 3         |
| 2  | Thermo-economic analysis of an oxygen production plant powered by an innovative energy recovery system. Energy, 2022, 255, 124419.                                                                                                                                | 4.5 | 0         |
| 3  | Diesel engine optimization and exhaust thermal management by means of variable valve train strategies. International Journal of Engine Research, 2021, 22, 1196-1213.                                                                                             | 1.4 | 14        |
| 4  | Effect of the exhaust thermal insulation on the engine efficiency and the exhaust temperature under transient conditions. International Journal of Engine Research, 2021, 22, 2869-2883.                                                                          | 1.4 | 11        |
| 5  | Analysis of a novel concept of 2-stroke rod-less opposed pistons engine (2S-ROPE): Testing, modelling, and forward potential. Applied Energy, 2021, 282, 116135.                                                                                                  | 5.1 | 14        |
| 6  | Experimental validation of a one-dimensional twin-entry radial turbine model under non-linear pulse conditions. International Journal of Engine Research, 2021, 22, 390-406.                                                                                      | 1.4 | 10        |
| 7  | An Experimental and Modeling Strategy for Obtaining Complete Characteristic Maps of Dual-Volute<br>Radial Inflow Turbines. Journal of Engineering for Gas Turbines and Power, 2021, 143, .                                                                        | 0.5 | Ο         |
| 8  | Oxy-fuel combustion feasibility of compression ignition engines using oxygen separation membranes for enabling carbon dioxide capture. Energy Conversion and Management, 2021, 247, 114732.                                                                       | 4.4 | 14        |
| 9  | A Methodology for Measuring Turbocharger Adiabatic Maps in a Gas-Stand and Its Usage for<br>Calibrating Control Oriented and One-Dimensional Models at Early ICE Design Stages. Journal of<br>Energy Resources Technology, Transactions of the ASME, 2021, 143, . | 1.4 | 5         |
| 10 | A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger<br>maps in order to obtain adiabatic efficiency of the turbomachinery. International Journal of Engine<br>Research, 2020, 21, 1314-1335.                        | 1.4 | 17        |
| 11 | Experimental validation of a quasi-two-dimensional radial turbine model. International Journal of Engine Research, 2020, 21, 915-926.                                                                                                                             | 1.4 | 4         |
| 12 | Analysis of the energy balance during World harmonized Light vehicles Test Cycle in warmed and cold<br>conditions using a Virtual Engine. International Journal of Engine Research, 2020, 21, 1037-1054.                                                          | 1.4 | 18        |
| 13 | Development of a Variable Valve Actuation Control to Improve Diesel Oxidation Catalyst Efficiency and Emissions in a Light Duty Diesel Engine. Energies, 2020, 13, 4561.                                                                                          | 1.6 | 8         |
| 14 | A Robust Adiabatic Model for a Quasi-Steady Prediction of Far-Off Non-Measured Performance in<br>Vaneless Twin-Entry or Dual-Volute Radial Turbines. Applied Sciences (Switzerland), 2020, 10, 1955.                                                              | 1.3 | 4         |
| 15 | A Methodology to Calibrate Gas-Dynamic Models of Turbocharged Petrol Engines With Variable<br>Geometry Turbines and With Focus on Dynamics Prediction During Tip-in Load Transient Tests. , 2020, , .                                                             |     | 5         |
| 16 | An Experimental and Modelling Strategy for Obtaining Complete Characteristic Maps of Dual-Volute<br>Radial Inflow Turbines. , 2020, , .                                                                                                                           |     | 0         |
| 17 | Experimental approach for the characterization and performance analysis of twin entry radial-inflow turbines in a gas stand and with different flow admission conditions. Applied Thermal Engineering, 2019, 159, 113737.                                         | 3.0 | 24        |
| 18 | An innovative losses model for efficiency map fitting of vaneless and variable vaned radial turbines extrapolating towards extreme off-design conditions. Energy, 2019, 180, 626-639.                                                                             | 4.5 | 15        |

FRANCISCO JOSé ARNAU

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Methodology for Measuring Turbocharger Adiabatic Maps in a Gas-Stand and its Usage for<br>Calibrating Control Oriented and 1D Models at Early ICE Design Stages. , 2019, , .              |     | 2         |
| 20 | Analysis of low-pressure exhaust gases recirculation transport and control in transient operation of automotive diesel engines. Applied Thermal Engineering, 2018, 137, 184-192.            | 3.0 | 9         |
| 21 | Impact of a Holistic Turbocharger Model in the Prediction of Engines Performance in Transient<br>Operation and in Steady State With LP-EGR. , 2018, , .                                     |     | 1         |
| 22 | Phenomenological methodology for assessing the influence of flow conditions on the acoustic response of exhaust aftertreatment systems. Journal of Sound and Vibration, 2017, 396, 289-306. | 2.1 | 4         |
| 23 | On the effect of different flux limiters on the performance of an engine gas exchange gas-dynamic model. International Journal of Mechanical Sciences, 2017, 133, 740-751.                  | 3.6 | 7         |
| 24 | Experimental procedure for the characterization of turbocharger's waste-gate discharge coefficient.<br>Advances in Mechanical Engineering, 2017, 9, 168781401772824.                        | 0.8 | 5         |
| 25 | Development and validation of a radial turbine efficiency and mass flow model at design and off-design conditions. Energy Conversion and Management, 2016, 128, 281-293.                    | 4.4 | 42        |
| 26 | A non-linear quasi-3D model with Flux-Corrected-Transport for engine gas-exchange modelling.<br>Journal of Computational and Applied Mathematics, 2016, 291, 103-111.                       | 1.1 | 4         |
| 27 | Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers.<br>Journal of Engineering for Gas Turbines and Power, 2015, 137, .                            | 0.5 | 26        |
| 28 | Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes. Energy, 2015, 86, 204-218.                          | 4.5 | 55        |
| 29 | A study on the internal convection in small turbochargers. Proposal ofÂheat transfer convective coefficients. Applied Thermal Engineering, 2015, 89, 587-599.                               | 3.0 | 41        |
| 30 | A Procedure to Achieve 1D Predictive Modeling of Turbochargers under Hot and Pulsating Flow Conditions at the Turbine Inlet. , 2014, , .                                                    |     | 9         |
| 31 | Methodology to Characterize Heat Transfer Phenomena in Small Automotive Turbochargers:<br>Experiments and Modelling Based Analysis. , 2014, , .                                             |     | 9         |
| 32 | Application of the two-step Lax and Wendroff FCT and the CE-SE method to flow transport in wall-flow monoliths. International Journal of Computer Mathematics, 2014, 91, 71-84.             | 1.0 | 8         |
| 33 | External heat losses in small turbochargers: Model and experiments. Energy, 2014, 71, 534-546.                                                                                              | 4.5 | 50        |
| 34 | On-Engine Measurement of Turbocharger Surge Limit. Experimental Techniques, 2013, 37, 47-54.                                                                                                | 0.9 | 18        |
| 35 | Determination of heat flows inside turbochargers by means of a one dimensional lumped model.<br>Mathematical and Computer Modelling, 2013, 57, 1847-1852.                                   | 2.0 | 50        |

Packed bed of spherical particles approach for pressure drop prediction in wall-flow DPFs (diesel) Tj ETQq0 0 0 rgBT $_{4.5}^{/0}$  Verlock 10 Tf 50 6

FRANCISCO JOSé ARNAU

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Contribution to the Modeling and Understanding of Cold Pulsating Flow Influence in the Efficiency of Small Radial Turbines for Turbochargers. Journal of Engineering for Gas Turbines and Power, 2012, 134, .               | 0.5 | 10        |
| 38 | Derivation of the method of characteristics for the fluid dynamic solution of flow advection along porous wall channels. Applied Mathematical Modelling, 2012, 36, 3134-3152.                                               | 2.2 | 20        |
| 39 | A fluid dynamic model for unsteady compressible flow in wall-flow diesel particulate filters. Energy, 2011, 36, 671-684.                                                                                                    | 4.5 | 75        |
| 40 | Assessment of a methodology to mesh the spatial domain in the proximity of the boundary conditions for one-dimensional gas dynamic calculation. Mathematical and Computer Modelling, 2011, 54, 1747-1752.                   | 2.0 | 2         |
| 41 | Solution of the turbocompressor boundary condition for one-dimensional gas-dynamic codes.<br>Mathematical and Computer Modelling, 2010, 52, 1288-1297.                                                                      | 2.0 | 29        |
| 42 | Description of a Semi-Independent Time Discretization Methodology for a One-Dimensional Gas<br>Dynamics Model. Journal of Engineering for Gas Turbines and Power, 2009, 131, .                                              | 0.5 | 42        |
| 43 | 1D gas dynamic modelling of mass conservation in engine duct systems with thermal contact discontinuities. Mathematical and Computer Modelling, 2009, 49, 1078-1088.                                                        | 2.0 | 18        |
| 44 | High-frequency response of a calculation methodology for gas dynamics based on Independent Time<br>Discretisation. Mathematical and Computer Modelling, 2009, 50, 812-822.                                                  | 2.0 | 12        |
| 45 | Methodology for characterisation and simulation of turbocharged diesel engines combustion during transient operation. Part 1: Data acquisition and post-processing. Applied Thermal Engineering, 2009, 29, 142-149.         | 3.0 | 46        |
| 46 | Analysis of the capabilities of a two-stage turbocharging system to fulfil the US2007 anti-pollution directive for heavy duty diesel engines. International Journal of Automotive Technology, 2008, 9, 277-288.             | 0.7 | 38        |
| 47 | Experimental validation of a new semiâ€implicit CE–SE scheme for the calculation of unsteady<br>oneâ€dimensional flow in tapered ducts. International Journal for Numerical Methods in Engineering,<br>2008, 74, 1473-1494. | 1.5 | 4         |
| 48 | A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas<br>dynamics codes for internal combustion engines modelling. Energy Conversion and Management,<br>2008, 49, 3729-3745.      | 4.4 | 88        |
| 49 | Description and Analysis of a One-Dimensional Gas-Dynamic Model With Independent Time<br>Discretization. , 2008, , .                                                                                                        |     | 16        |
| 50 | A Simple Model for Predicting the Trapped Mass in a DI Diesel Engine. , 2007, , .                                                                                                                                           |     | 15        |
| 51 | Time-domain computation of muffler frequency response: Comparison of different numerical schemes.<br>Journal of Sound and Vibration, 2007, 305, 333-347.                                                                    | 2.1 | 34        |
| 52 | An iterative method to obtain analytical-numerical approximation of the one-dimensional gas flow transport solution in conical ducts. Mathematical and Computer Modelling, 2005, 41, 407-416.                               | 2.0 | 2         |
| 53 | Global Analysis of the EGR Circuit in a HSDI Diesel Engine in Transient Operation. , 2005, , .                                                                                                                              |     | 8         |
| 54 | Analysis of numerical methods to solve one-dimensional fluid-dynamic governing equations under impulsive flow in tapered ducts. International Journal of Mechanical Sciences, 2004, 46, 981-1004.                           | 3.6 | 34        |

FRANCISCO JOSé ARNAU

| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A semi-implicit space-time CE-SE method to improve mass conservation through tapered ducts in internal combustion engines. Mathematical and Computer Modelling, 2004, 40, 941-951. | 2.0 | 16        |
| 56 | Cooled EGR Modulation: A Strategy to Meet EURO IV Emission Standards in Automotive DI Diesel Engines. , 0, , .                                                                     |     | 6         |
| 57 | Heat Transfer Model to Calculate Turbocharged HSDI Diesel Engines Performance. , 0, , .                                                                                            |     | 8         |
| 58 | Measurement and Modeling of Compressor Surge on Engine Test Bench for Different Intake Line<br>Configurations. , 0, , .                                                            |     | 17        |
| 59 | Acoustic One-Dimensional Compressor Model for Integration in a Gas-Dynamic Code. , 0, , .                                                                                          |     | 9         |
| 60 | Importance of Heat Transfer Phenomena in Small Turbochargers for Passenger Car Applications. SAE<br>International Journal of Engines, 0, 6, 716-728.                               | 0.4 | 57        |
| 61 | General Procedure for the Determination of Heat Transfer Properties in Small Automotive<br>Turbochargers. SAE International Journal of Engines, 0, 8, 30-41.                       | 0.4 | 17        |
| 62 | Analysis of Engine Walls Thermal Insulation: Performance and Emissions. , 0, , .                                                                                                   |     | 12        |
| 63 | Development of an Integrated Virtual Engine Model to Simulate New Standard Testing Cycles. , 0, , .                                                                                |     | 20        |
| 64 | Lumped Approach for Flow-Through and Wall-Flow Monolithic Reactors Modelling for Real-Time<br>Automotive Applications. , 0, , .                                                    |     | 16        |