Jürg Schönenberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/857040/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ancestral flower of angiosperms and its early diversification. Nature Communications, 2017, 8, 16047.	12.8	259
2	EARLY TERTIARY OUT-OF-INDIA DISPERSAL OF CRYPTERONIACEAE: EVIDENCE FROM PHYLOGENY AND MOLECULAR DATING. Evolution; International Journal of Organic Evolution, 2002, 56, 1931-1942.	2.3	159
3	Plant Tissues in 3D via X-Ray Tomography: Simple Contrasting Methods Allow High Resolution Imaging. PLoS ONE, 2013, 8, e75295.	2.5	149
4	Molecular Phylogenetics and Patterns of Floral Evolution in the Ericales. International Journal of Plant Sciences, 2005, 166, 265-288.	1.3	126
5	Phylogeny, historical biogeography, and diversification of angiosperm order Ericales suggest ancient Neotropical and East Asian connections. Molecular Phylogenetics and Evolution, 2018, 122, 59-79.	2.7	92
6	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	5.3	73
7	Molecular phylogeny and floral evolution of Penaeaceae, Oliniaceae, Rhynchocalycaceae, and Alzateaceae (Myrtales). American Journal of Botany, 2003, 90, 293-309.	1.7	70
8	The floral morphospace – a modern comparative approach to study angiosperm evolution. New Phytologist, 2014, 204, 841-853.	7.3	64
9	Normapolles plants: a prominent component of the Cretaceous rosid diversification. Plant Systematics and Evolution, 2006, 260, 107.	0.9	63
10	Beyond buzzâ€pollination – departures from an adaptive plateau lead to new pollination syndromes. New Phytologist, 2019, 221, 1136-1149.	7.3	61
11	Did Crypteroniaceae Really Disperse Out of India? Molecular Dating Evidence from rbcL, ndhF, and rpl16 Intron Sequences. International Journal of Plant Sciences, 2004, 165, S69-S83.	1.3	58
12	EARLY TERTIARY OUT-OF-INDIA DISPERSAL OF CRYPTERONIACEAE: EVIDENCE FROM PHYLOGENY AND MOLECULAR DATING. Evolution; International Journal of Organic Evolution, 2002, 56, 1931.	2.3	56
13	Fossil flowers of ericalean affinity from the Late Cretaceous of Southern Sweden. American Journal of Botany, 2001, 88, 467-480.	1.7	53
14	Cunoniaceae in the Cretaceous of Europe: Evidence from Fossil Flowers. Annals of Botany, 2001, 88, 423-437.	2.9	52
15	Genic rather than genomeâ€wide differences between sexually deceptive <i><scp>O</scp>phrys</i> orchids with different pollinators. Molecular Ecology, 2014, 23, 6192-6205.	3.9	52
16	Endressianthus, a New Normapollesâ€Producing Plant Genus of Fagalean Affinity from the Late Cretaceous of Portugal. International Journal of Plant Sciences, 2003, 164, S201-S223.	1.3	49
17	A Comparison of Floral Structures of Anisophylleaceae and Cunoniaceae and the Problem of their Systematic Position. Annals of Botany, 2001, 88, 439-455.	2.9	47
18	Bimodal Pollination Systems in Andean Melastomataceae Involving Birds, Bats, and Rodents. American Naturalist, 2019, 194, 104-116.	2.1	47

Jürg Schönenberger

#	Article	IF	CITATIONS
19	Normapolles flowers of fagalean affinity from the Late Cretaceous of Portugal. Plant Systematics and Evolution, 2001, 226, 205-230.	0.9	46
20	A Specialized Bird Pollination System with a Bellows Mechanism for Pollen Transfer and Staminal Food Body Rewards. Current Biology, 2014, 24, 1615-1619.	3.9	46
21	Emergence of a floral colour polymorphism by pollinator-mediated overdominance. Nature Communications, 2019, 10, 63.	12.8	45
22	Structure and Development of the Flowers in Mendoncia, Pseudocalyx, and Thunbergia (Acanthaceae) and Their Systematic Implications. International Journal of Plant Sciences, 1998, 159, 446-465.	1.3	40
23	The role of wood anatomy in phylogeny reconstruction of Ericales. Cladistics, 2007, 23, 229-294.	3.3	40
24	Metabolism and development – integration of micro computed tomography data and metabolite profiling reveals metabolic reprogramming from floral initiation to silique development. New Phytologist, 2014, 202, 322-335.	7.3	40
25	Glandulocalyx upatoiensis, a fossil flower of Ericales (Actinidiaceae/Clethraceae) from the Late Cretaceous (Santonian) of Georgia, USA. Annals of Botany, 2012, 109, 921-936.	2.9	38
26	Modularity increases rate of floralÂevolution and adaptive success for functionally specialized pollination systems. Communications Biology, 2019, 2, 453.	4.4	37
27	High Diversity and Low Specificity of Chaetothyrialean Fungi in Carton Galleries in a Neotropical Ant–Plant Association. PLoS ONE, 2014, 9, e112756.	2.5	36
28	Novel computed tomography-based tools reliably quantify plant reproductive investment. Journal of Experimental Botany, 2018, 69, 525-535.	4.8	36
29	Floral uniformity through evolutionary time in a speciesâ€ ⊧ ich tree lineage. New Phytologist, 2019, 221, 1597-1608.	7.3	36
30	Diversity and evolution of floral structure among early diverging lineages in the Ericales. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 437-448.	4.0	35
31	How (much) do flowers vary? Unbalanced disparity among flower functional modules and a mosaic pattern of morphospace occupation in the order Ericales. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170066.	2.6	35
32	Molecular phylogenetics and morphological evolution of Thunbergioideae (Acanthaceae). Taxon, 2008, 57, 811-822.	0.7	34
33	Reproductive structures and phylogenetic framework of the rosids - progress and prospects. Plant Systematics and Evolution, 2006, 260, 87.	0.9	33
34	Modularity and evolution of flower shape: the role of function, development, and spandrels in <i>Erica</i> . New Phytologist, 2020, 226, 267-280.	7.3	32
35	Structure and evolution of the androecium in the Malvatheca clade (Malvaceae s.l.) and implications for Malvaceae and Malvales. Plant Systematics and Evolution, 2006, 260, 171.	0.9	31
36	Nocturnal Plant Bugs Use cis-Jasmone to Locate Inflorescences of an Araceae as Feeding and Mating Site. Journal of Chemical Ecology, 2016, 42, 300-304.	1.8	31

#	Article	IF	CITATIONS
37	Rise from the ashes – the reconstruction of charcoal fossil flowers. Trends in Plant Science, 2005, 10, 436-443.	8.8	30
38	Comparative Floral Development and Androecium Structure in Malvoideae (Malvaceae s.l.). International Journal of Plant Sciences, 2004, 165, 445-473.	1.3	29
39	Floral Structure and Organization in Platanaceae. International Journal of Plant Sciences, 2009, 170, 210-225.	1.3	29
40	Partner choice through concealed floral sugar rewards evolved with the specialization of ant–plant mutualisms. New Phytologist, 2016, 211, 1358-1370.	7.3	29
41	Early floral development and androecium organization in Fouquieriaceae (Ericales). Plant Systematics and Evolution, 2005, 254, 233-249.	0.9	28
42	Comparative Floral Structure and Systematics of Fouquieriaceae and Polemoniaceae (Ericales). International Journal of Plant Sciences, 2009, 170, 1132-1167.	1.3	28
43	Low bee visitation rates explain pollinator shifts to vertebrates in tropical mountains. New Phytologist, 2021, 231, 864-877.	7.3	27
44	Functional Diversity of Nectary Structure and Nectar Composition in the Genus Fritillaria (Liliaceae). Frontiers in Plant Science, 2018, 9, 1246.	3.6	26
45	Transmission of fungal partners to incipient Cecropia-tree ant colonies. PLoS ONE, 2018, 13, e0192207.	2.5	26
46	Comparative seed morphology and character evolution in the genus Lysimachia (Myrsinaceae) and related taxa. Plant Systematics and Evolution, 2008, 271, 177-197.	0.9	25
47	Floral structure and development in Rafflesiaceae with emphasis on their exceptional gynoecia. American Journal of Botany, 2014, 101, 225-243.	1.7	24
48	Ant-cultivated Chaetothyriales in hollow stems of myrmecophytic Cecropia sp. trees – diversity and patterns. Fungal Ecology, 2016, 23, 131-140.	1.6	24
49	Phylogenetic analysis of fossil flowers using an angiospermâ€wide data set: proofâ€ofâ€concept and challenges ahead. American Journal of Botany, 2020, 107, 1433-1448.	1.7	24
50	From the Soft to the Hard: Changes in Microchemistry During Cell Wall Maturation of Walnut Shells. Frontiers in Plant Science, 2020, 11, 466.	3.6	24
51	Floral structure, development and diversity in Thunbergia (Acanthaceae). Botanical Journal of the Linnean Society, 1999, 130, 1-36.	1.6	21
52	Challenges and questions in reconstructing the ancestral flower of angiosperms: A reply to Sokoloff etÂal American Journal of Botany, 2018, 105, 127-135.	1.7	21
53	Comparative floral development reveals novel aspects of structure and diversity of flowers in Cannabaceae. Botanical Journal of the Linnean Society, 2020, 193, 64-83.	1.6	20
54	Comparative floral structure and systematics in the balsaminoid clade including Balsaminaceae, Marcgraviaceae and Tetrameristaceae (Ericales). Botanical Journal of the Linnean Society, 2013, 173, 325-386.	1.6	19

#	Article	IF	CITATIONS
55	The evolution of afroâ€montane <i>Delphinium</i> (Ranunculaceae): Morphospecies, phylogenetics and biogeography. Taxon, 2016, 65, 1313-1327.	0.7	19
56	Testing the impact of morphological rate heterogeneity on ancestral state reconstruction of five floral traits in angiosperms. Scientific Reports, 2018, 8, 9473.	3.3	19
57	Histological and Micro-CT Evidence of Stigmatic Rostellum Receptivity Promoting Auto-Pollination in the Madagascan Orchid Bulbophyllum bicoloratum. PLoS ONE, 2013, 8, e72688.	2.5	19
58	Global patterns and a latitudinal gradient of flower disparity: perspectives from the angiosperm order Ericales. New Phytologist, 2021, 230, 821-831.	7.3	18
59	Comparative Floral Development and Structure of the Black Mangrove GenusAvicenniaL. and Related Taxa in the Acanthaceae. International Journal of Plant Sciences, 2011, 172, 330-344.	1.3	17
60	Unraveling the Developmental and Genetic Mechanisms Underpinning Floral Architecture in Proteaceae. Frontiers in Plant Science, 2019, 10, 18.	3.6	17
61	Comparative floral structure and systematics in the sarracenioid clade (Actinidiaceae, Roridulaceae) Tj ETQq1 1	0.784314 1.6	rgBT /Overloc
62	Differences in meristem size and expression of branching genes are associated with variation in panicle phenotype in wild and domesticated African rice. EvoDevo, 2017, 8, 2.	3.2	14
63	Floral traits and pollination ecology of European Arum hybrids. Oecologia, 2016, 180, 439-451.	2.0	13
64	Gynoecium and Fruit Development inHeliotropiumSect.Heliothamnus(Heliotropiaceae). International Journal of Plant Sciences, 2018, 179, 275-286.	1.3	13
65	Ontogeny and Vascularization Elucidate the Atypical Floral Structure of <i>Ampelocera glabra</i> , a Tropical Species of Ulmaceae. International Journal of Plant Sciences, 2018, 179, 461-476.	1.3	13
66	A perfume-collecting male oil bee? Evidences of a novel pollination system involving Anthurium acutifolium (Araceae) and Paratetrapedia chocoensis (Apidae, Tapinotaspidini). Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 232, 7-15.	1.2	12
67	Modern plant morphological studies. Botanical Journal of the Linnean Society, 2012, 169, 565-568.	1.6	11
68	Floral diversity and pollination strategies of three rheophytic Schismatoglottideae (Araceae). Plant Biology, 2016, 18, 84-97.	3.8	11
69	Floral structure, development and diversity in Thunbergia (Acanthaceae). Botanical Journal of the Linnean Society, 1999, 130, 1-36.	1.6	10
70	Late Cretaceous follicular fruits from southern Sweden with systematic affinities to early diverging eudicots. Botanical Journal of the Linnean Society, 2005, 148, 377-407.	1.6	10
71	Molecular phylogenetics and floral evolution in the sarracenioid clade (Actinidiaceae, Roridulaceae) Tj ETQq1 1 C	0.784314 r 0.7	gBT/Overloci
72	Stamen dimorphism in birdâ€pollinated flowers: Investigating alternative hypotheses on the evolution of heteranthery. Evolution: International Journal of Organic Evolution, 2021, 75, 2589-2599.	2.3	10

#	Article	IF	CITATIONS
73	Population structure in Neotropical plants: Integrating pollination biology, topography and climatic niches. Molecular Ecology, 2022, 31, 2264-2280.	3.9	10
74	Red and white clover provide food resources for honeybees and wild bees in urban environments. Nordic Journal of Botany, 2021, 39, .	0.5	9
75	Hatching glands in cephalopods – A comparative study. Zoologischer Anzeiger, 2013, 253, 66-82.	0.9	8
76	Early floral development of Pentaphylacaceae (Ericales) and its systematic implications. Plant Systematics and Evolution, 2014, 300, 1547-1560.	0.9	8
77	Early floral development and androecium organization in the sarracenioid clade (Actinidiaceae,) Tj ETQq1 1 0.784 295-318.	314 rgBT 1.6	Overlock 10 8
78	Dissecting Metabolism of Leaf Nodules in Ardisia crenata and Psychotria punctata. Frontiers in Molecular Biosciences, 2021, 8, 683671.	3.5	8
79	The short life of the Hoyle organ of Sepia officinalis: formation, differentiation and degradation by programmed cell death. Hydrobiologia, 2018, 808, 35-55.	2.0	7
80	Phylogenetic Relationships among Endemic Hawaiian <i>Lysimachia</i> (Ericales: Primulaceae): Insights from Nuclear and Chloroplast DNA Sequence Data. Pacific Science, 2013, 67, 237-251.	0.6	5
81	Asterids. Botanical Journal of the Linnean Society, 2013, 173, 321-324.	1.6	5
82	Evidence for selectively constrained 3D flower shape evolution in a Late Miocene clade of Malagasy <i>Bulbophyllum</i> orchids. New Phytologist, 2021, 232, 853-867.	7.3	5
83	Comparative Pollination Ecology of Five European Euphorbia Species. International Journal of Plant Sciences, 0, , 000-000.	1.3	5
84	Orthologous nuclear markers and new transcriptomes that broadly cover the phylogenetic diversity of Acanthaceae. Applications in Plant Sciences, 2019, 7, e11290.	2.1	4
85	Chemical Attraction of Gall Midge Pollinators (Cecidomyiidae: Cecidomyiinae) to Anthurium acutangulum (Araceae). Journal of Chemical Ecology, 2022, 48, 263-269.	1.8	4
86	Deciphering the complex architecture of an herb using micro-computed X-ray tomography, with an illustrated discussion on architectural diversity of herbs. Botanical Journal of the Linnean Society, 2018, 186, 145-157.	1.6	3
87	Threeâ€dimensional Xâ€rayâ€computed tomography of 3300―to 6000â€yearâ€old <i>Citrullus</i> seeds from and Egypt compared to extant seeds throws doubts on species assignments. Plants People Planet, 2021, 3, 694-702.	Libya 3.3	3
88	Flowers—Diversity, Development, and Evolution: Introduction. International Journal of Plant Sciences, 2003, 164, S197-S199.	1.3	2
89	Alterations in the mantle epithelium during transition from hatching gland to adhesive organ of Idiosepius pygmaeus (Mollusca, Cephalopoda). Mechanisms of Development, 2015, 135, 43-57.	1.7	2
90	Spine Formation as a Hatching Tool inEuprymna scolopes(Mollusca, Cephalopoda, Sepiolidae). Malacologia, 2016, 59, 231-238.	0.4	2

#	Article	IF	CITATIONS
91	Floral Evolution: Breeding Systems, Pollinators, and Beyond. International Journal of Plant Sciences, 2019, 180, 929-933.	1.3	2
92	Floral morphogenesis of <i>Celtis</i> species: implications for breeding system and reduced floral structure. American Journal of Botany, 2021, 108, 1595-1611.	1.7	2
93	A comparative approach reveals diversity of floral developmental processes in Urticaceae. Botanical Journal of the Linnean Society, 2022, 200, 465-490.	1.6	2
94	In Search of the Earliest Flowers: Introduction. International Journal of Plant Sciences, 2008, 169, 815-815.	1.3	1
95	A multicarpellate fruit from Late Cretaceous sediments of South Bohemia, Czech Republic. Palaeontologia Electronica, 0, , .	0.9	0