
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8570301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluorescence activated cell sorting—A selective tool for plant cell isolation and analysis. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 725-736.	1.1	13
2	Potassium transporter TRH1/KUP4 contributes to distinct auxin-mediated root system architecture responses. Plant Physiology, 2022, 188, 1043-1060.	2.3	21
3	Auxin boosts energy generation pathways to fuel pollen maturation in barley. Current Biology, 2022, 32, 1798-1811.e8.	1.8	16
4	Inactivation of the entire Arabidopsis group II GH3s confers tolerance to salinity and water deficit. New Phytologist, 2022, 235, 263-275.	3.5	23
5	KAI2 regulates seedling development by mediating lightâ€induced remodelling of auxin transport. New Phytologist, 2022, 235, 126-140.	3.5	9
6	iP & OEIP – Cytokinin Micro Application Modulates Root Development with High Spatial Resolution. Advanced Materials Technologies, 2022, 7, .	3.0	3
7	Nitrogen represses haustoria formation through abscisic acid in the parasitic plant Phtheirospermum japonicum. Nature Communications, 2022, 13, .	5.8	13
8	Modulation of <i>Arabidopsis</i> root growth by specialized triterpenes. New Phytologist, 2021, 230, 228-243.	3.5	20
9	Studies of moss reproductive development indicate that auxin biosynthesis in apical stem cells may constitute an ancestral function for focal growth control. New Phytologist, 2021, 229, 845-860.	3.5	24
10	Auxin Metabolism in Plants. Cold Spring Harbor Perspectives in Biology, 2021, 13, a039867.	2.3	110
11	Best practices in plant cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 311-317.	1.1	16
12	Dynamics of Auxin and Cytokinin Metabolism during Early Root and Hypocotyl Growth in Theobroma cacao. Plants, 2021, 10, 967.	1.6	4
13	The chemical compound â€~Heatin' stimulates hypocotyl elongation and interferes with the Arabidopsis NIT1â€subfamily of nitrilases. Plant Journal, 2021, 106, 1523-1540.	2.8	7
14	Alterations in hormonal signals spatially coordinate distinct responses to DNA double-strand breaks in <i>Arabidopsis</i> roots. Science Advances, 2021, 7, .	4.7	10
15	Broadening the roles of UDPâ€glycosyltransferases in auxin homeostasis and plant development. New Phytologist, 2021, 232, 642-654.	3.5	31
16	A WOX/Auxin Biosynthesis Module Controls Growth to Shape Leaf Form. Current Biology, 2020, 30, 4857-4868.e6.	1.8	69
17	HEARTBREAK Controls Post-translational Modification of INDEHISCENT to Regulate Fruit Morphology in Capsella. Current Biology, 2020, 30, 3880-3888.e5.	1.8	5
18	Cell-surface receptors enable perception of extracellular cytokinins. Nature Communications, 2020, 11, 4284.	5.8	47

#	Article	IF	CITATIONS
19	Reaction Wood Anatomical Traits and Hormonal Profiles in Poplar Bent Stem and Root. Frontiers in Plant Science, 2020, 11, 590985.	1.7	11
20	HY5 and phytochrome activity modulate shoot-to-root coordination during thermomorphogenesis in <i>Arabidopsis</i> . Development (Cambridge), 2020, 147, .	1.2	27
21	The CEP5 Peptide Promotes Abiotic Stress Tolerance, As Revealed by Quantitative Proteomics, and Attenuates the AUX/IAA Equilibrium in Arabidopsis. Molecular and Cellular Proteomics, 2020, 19, 1248-1262.	2.5	35
22	Nyctinastic thallus movement in the liverwort Marchantia polymorpha is regulated by a circadian clock. Scientific Reports, 2020, 10, 8658.	1.6	11
23	Natural Variation in Adventitious Rooting in the Alpine Perennial Arabis alpina. Plants, 2020, 9, 184.	1.6	7
24	Vernalization shapes shoot architecture and ensures the maintenance of dormant buds in the perennial <i>Arabis alpina</i> . New Phytologist, 2020, 227, 99-115.	3.5	24
25	Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis. New Phytologist, 2020, 226, 1753-1765.	3.5	33
26	Auxin export from proximal fruits drives arrest in temporally competent inflorescences. Nature Plants, 2020, 6, 699-707.	4.7	33
27	Control of root meristem establishment in conifers. Physiologia Plantarum, 2019, 165, 81-89.	2.6	9
28	Implantable Organic Electronic Ion Pump Enables ABA Hormone Delivery for Control of Stomata in an Intact Tobacco Plant. Small, 2019, 15, e1902189.	5.2	33
29	PIN-driven auxin transport emerged early in streptophyte evolution. Nature Plants, 2019, 5, 1114-1119.	4.7	44
30	A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23345-23356.	3.3	95
31	Epigenetic Regulation of Auxin Homeostasis. Biomolecules, 2019, 9, 623.	1.8	29
32	A role for the auxin precursor anthranilic acid in root gravitropism via regulation of <scp>PIN</scp> â€ <scp>FORMED</scp> protein polarity and relocalisation in <i>Arabidopsis</i> . New Phytologist, 2019, 223, 1420-1432.	3.5	12
33	Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants. Scientific Reports, 2019, 9, 4227.	1.6	60
34	Regulatory Diversification of INDEHISCENT in the Capsella Genus Directs Variation in Fruit Morphology. Current Biology, 2019, 29, 1038-1046.e4.	1.8	12
35	Selective auxin agonists induce specific AUX/IAA protein degradation to modulate plant development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6463-6472.	3.3	23
36	HISTONE DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis in <i>Arabidopsis thaliana</i> by mediating H2A.Z depletion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25343-25354.	3.3	91

#	Article	IF	CITATIONS
37	A bacterial assay for rapid screening of IAA catabolic enzymes. Plant Methods, 2019, 15, 126.	1.9	13
38	Tissueâ€specific hormone profiles from woody poplar roots under bending stress. Physiologia Plantarum, 2019, 165, 101-113.	2.6	14
39	Auxin Function in the Brown Alga <i>Dictyota dichotoma</i> . Plant Physiology, 2019, 179, 280-299.	2.3	24
40	Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. Journal of Experimental Botany, 2018, 69, 2569-2579.	2.4	60
41	Circadian clock components control daily growth activities by modulating cytokinin levels and cell divisionâ€associated gene expression in <i>Populus</i> trees. Plant, Cell and Environment, 2018, 41, 1468-1482.	2.8	22
42	A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nature Communications, 2018, 9, 1409.	5.8	146
43	Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nature Communications, 2018, 9, 1408.	5.8	110
44	Plant Hormonomics: Multiple Phytohormone Profiling by Targeted Metabolomics. Plant Physiology, 2018, 177, 476-489.	2.3	293
45	Combined transcriptome and translatome analyses reveal a role for tryptophanâ€dependent auxin biosynthesis in the control of <i>DOG1</i> â€dependent seed dormancy. New Phytologist, 2018, 217, 1077-1085.	3.5	32
46	The Xerobranching Response Represses Lateral Root Formation When Roots Are Not in Contact with Water. Current Biology, 2018, 28, 3165-3173.e5.	1.8	94
47	Broad spectrum developmental role of Brachypodium <scp>AUX</scp> 1. New Phytologist, 2018, 219, 1216-1223.	3.5	18
48	Zooming In on Plant Hormone Analysis: Tissue- and Cell-Specific Approaches. Annual Review of Plant Biology, 2017, 68, 323-348.	8.6	74
49	Regulating plant physiology with organic electronics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4597-4602.	3.3	51
50	Altered expression of maize PLASTOCHRON1 enhances biomass and seed yield by extending cell division duration. Nature Communications, 2017, 8, 14752.	5.8	89
51	Contrasting patterns of cytokinins between years in senescing aspen leaves. Plant, Cell and Environment, 2017, 40, 622-634.	2.8	34
52	Auxin minimum triggers the developmental switch from cell division to cell differentiation in the <i>Arabidopsis</i> root. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7641-E7649.	3.3	193
53	Type B Response Regulators Act As Central Integrators in Transcriptional Control of the Auxin Biosynthesis Enzyme TAA1. Plant Physiology, 2017, 175, 1438-1454.	2.3	43
54	Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nature Communications, 2017, 8, 309.	5.8	102

#	Article	IF	CITATIONS
55	Enhanced Secondary- and Hormone Metabolism in Leaves of Arbuscular Mycorrhizal <i>Medicago truncatula</i> . Plant Physiology, 2017, 175, 392-411.	2.3	81
56	cis-Cinnamic Acid Is a Novel, Natural Auxin Efflux Inhibitor That Promotes Lateral Root Formation. Plant Physiology, 2017, 173, 552-565.	2.3	61
57	SHADE AVOIDANCE 4 Is Required for Proper Auxin Distribution in the Hypocotyl. Plant Physiology, 2017, 173, 788-800.	2.3	22
58	The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth. PLoS Genetics, 2017, 13, e1006607.	1.5	115
59	High-Resolution Cell-Type Specific Analysis of Cytokinins in Sorted Root Cell Populations of Arabidopsis thaliana. Methods in Molecular Biology, 2017, 1497, 231-248.	0.4	4
60	The epidermis coordinates auxin-induced stem growth in response to shade. Genes and Development, 2016, 30, 1529-1541.	2.7	99
61	The PLETHORA Gene Regulatory Network Guides Growth and Cell Differentiation in Arabidopsis Roots. Plant Cell, 2016, 28, 2937-2951.	3.1	127
62	The Effects of High Steady State Auxin Levels on Root Cell Elongation in Brachypodium. Plant Cell, 2016, 28, 1009-1024.	3.1	65
63	Dioxygenase-encoding <i>AtDAO1</i> gene controls IAA oxidation and homeostasis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11016-11021.	3.3	162
64	The allelochemical MDCA inhibits lignification and affects auxin homeostasis. Plant Physiology, 2016, 172, pp.01972.2015.	2.3	14
65	Local auxin metabolism regulates environment-induced hypocotyl elongation. Nature Plants, 2016, 2, 16025.	4.7	122
66	Dynamic regulation of auxin oxidase and conjugating enzymes <i>AtDAO1</i> and <i>GH3</i> modulates auxin homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11022-11027.	3.3	119
67	Quantitative Auxin Metabolite Profiling Using Stable Isotope Dilution UHPLCâ€MS/MS. Current Protocols in Plant Biology, 2016, 1, 419-430.	2.8	6
68	Cryptochromes Interact Directly with PIFs to Control Plant Growth in Limiting Blue Light. Cell, 2016, 164, 233-245.	13.5	445
69	Connective Auxin Transport in the Shoot Facilitates Communication between Shoot Apices. PLoS Biology, 2016, 14, e1002446.	2.6	133
70	Contrasting growth responses in lamina and petiole during neighbor detection depend on differential auxin responsiveness rather than different auxin levels. New Phytologist, 2015, 208, 198-209.	3.5	100
71	New mechanistic links between sugar and hormone signalling networks. Current Opinion in Plant Biology, 2015, 25, 130-137.	3.5	179
72	Cell-Type-Specific Cytokinin Distribution within the Arabidopsis Primary Root Apex. Plant Cell, 2015, 27, 1955-1967.	3.1	143

#	Article	IF	CITATIONS
73	The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana. Nature Communications, 2015, 6, 7641.	5.8	119
74	Development of the Poplar <i>-Laccaria bicolor</i> Ectomycorrhiza Modifies Root Auxin Metabolism, Signaling, and Response. Plant Physiology, 2015, 169, 890-902.	2.3	70
75	Cell-type specific metabolic profiling of Arabidopsis thaliana protoplasts as a tool for plant systems biology. Metabolomics, 2015, 11, 1679-1689.	1.4	23
76	Modelling of Arabidopsis LAX3 expression suggests auxin homeostasis. Journal of Theoretical Biology, 2015, 366, 57-70.	0.8	12
77	Three ancient hormonal cues co-ordinate shoot branching in a moss. ELife, 2015, 4, .	2.8	84
78	Auxin and Strigolactone Signaling Are Required for Modulation of Arabidopsis Shoot Branching by Nitrogen Supply Â. Plant Physiology, 2014, 166, 384-395.	2.3	112
79	Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in <i>Brassica rapa</i> Â Â Â Â. Plant Physiology, 2014, 165, 1285-1301.	2.3	128
80	ADP1 Affects Plant Architecture by Regulating Local Auxin Biosynthesis. PLoS Genetics, 2014, 10, e1003954.	1.5	47
81	Alleviation of <scp>Zn</scp> toxicity by low water availability. Physiologia Plantarum, 2014, 150, 412-424.	2.6	17
82	Identification of new adventitious rooting mutants amongst suppressors of the Arabidopsis thaliana superroot2 mutation. Journal of Experimental Botany, 2014, 65, 1605-1618.	2.4	38
83	Auxinâ€mediated nitrate signalling by <scp>NRT</scp> 1.1 participates in the adaptive response of <i><scp>A</scp>rabidopsis</i> root architecture to the spatial heterogeneity of nitrate availability. Plant, Cell and Environment, 2014, 37, 162-174.	2.8	187
84	Reduced phototropism in <i>pks</i> mutants may be due to altered auxinâ€regulated gene expression or reduced lateral auxin transport. Plant Journal, 2014, 77, 393-403.	2.8	41
85	Directional Auxin Transport Mechanisms in Early Diverging Land Plants. Current Biology, 2014, 24, 2786-2791.	1.8	113
86	Auxin–Âa simple compound with a profound effect on plant development. Physiologia Plantarum, 2014, 151, 1-2.	2.6	4
87	Integration of growth and patterning during vascular tissue formation in <i>Arabidopsis</i> . Science, 2014, 345, 1255215.	6.0	286
88	Identification and Profiling of Auxin and Auxin Metabolites. , 2014, , 39-60.		6
89	Light intensity modulates the regulatory network of the shade avoidance response in <>Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6515-6520.	3.3	111
90	Arabidopsis <i>gulliver1/superroot2â€7</i> identifies a metabolic basis for auxin and brassinosteroid synergy. Plant Journal, 2014, 80, 797-808.	2.8	35

#	Article	IF	CITATIONS
91	Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the <i>Arabidopsis</i> root apex. New Phytologist, 2013, 197, 1130-1141.	3.5	115
92	Auxin controls <scp>A</scp> rabidopsis anther dehiscence by regulating endothecium lignification and jasmonic acid biosynthesis. Plant Journal, 2013, 74, 411-422.	2.8	114
93	Spatial Coordination between Stem Cell Activity and Cell Differentiation in the Root Meristem. Developmental Cell, 2013, 26, 405-415.	3.1	113
94	Auxin metabolism and homeostasis during plant development. Development (Cambridge), 2013, 140, 943-950.	1.2	474
95	Coordination of auxin and ethylene biosynthesis by the aminotransferase VAS1. Nature Chemical Biology, 2013, 9, 244-246.	3.9	99
96	Thermospermine levels are controlled by an auxinâ€dependent feedback loop mechanism in <i>Populus</i> xylem. Plant Journal, 2013, 75, 685-698.	2.8	57
97	ArabidopsisÂWAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nature Communications, 2013, 4, 2625.	5.8	249
98	Disturbed Local Auxin Homeostasis Enhances Cellular Anisotropy and Reveals Alternative Wiring of Auxin-ethylene Crosstalk in Brachypodium distachyon Seminal Roots. PLoS Genetics, 2013, 9, e1003564.	1.5	59
99	Regulation of Auxin Homeostasis and Gradients in <i>Arabidopsis</i> Roots through the Formation of the Indole-3-Acetic Acid. Plant Cell, 2013, 25, 3858-3870.	3.1	131
100	Sequential induction of auxin efflux and influx carriers regulates lateral root emergence. Molecular Systems Biology, 2013, 9, 699.	3.2	104
101	Soluble Carbohydrates Regulate Auxin Biosynthesis via PIF Proteins in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 24, 4907-4916.	3.1	205
102	Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4668-4673.	3.3	304
103	An Endogenous Carbon-Sensing Pathway Triggers Increased Auxin Flux and Hypocotyl Elongation Â. Plant Physiology, 2012, 160, 2261-2270.	2.3	157
104	Tissueâ€ s pecific profiling of the <i>Arabidopsis thaliana</i> auxin metabolome. Plant Journal, 2012, 72, 523-536.	2.8	277
105	Fruit Growth in <i>Arabidopsis</i> Occurs via DELLA-Dependent and DELLA-Independent Gibberellin Responses. Plant Cell, 2012, 24, 3982-3996.	3.1	129
106	Linking photoreceptor excitation to changes in plant architecture. Genes and Development, 2012, 26, 785-790.	2.7	460
107	The Arabidopsis thaliana transcriptional activator STYLISH1 regulates genes affecting stamen development, cell expansion and timing of flowering. Plant Molecular Biology, 2012, 78, 545-559.	2.0	36
108	Subterranean space exploration: the development of root system architecture. Current Opinion in Plant Biology, 2012, 15, 97-102.	3.5	40

#	Article	IF	CITATIONS
109	Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant Journal, 2012, 71, 699-711.	2.8	498
110	<i>TFL2/LHP1</i> is involved in auxin biosynthesis through positive regulation of <i>YUCCA</i> genes. Plant Journal, 2011, 65, 897-906.	2.8	39
111	SHORT-ROOT Regulates Primary, Lateral, and Adventitious Root Development in Arabidopsis Â. Plant Physiology, 2011, 155, 384-398.	2.3	163
112	The <i>Arabidopsis</i> YUCCA1 Flavin Monooxygenase Functions in the Indole-3-Pyruvic Acid Branch of Auxin Biosynthesis. Plant Cell, 2011, 23, 3961-3973.	3.1	320
113	Auxin and cytokinin regulate each other's levels via a metabolic feedback loop. Plant Signaling and Behavior, 2011, 6, 901-904.	1.2	30
114	Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20242-20247.	3.3	348
115	Interplay between the NADP-Linked Thioredoxin and Glutathione Systems in <i>Arabidopsis</i> Auxin Signaling Â. Plant Cell, 2010, 22, 376-391.	3.1	272
116	Role of polyamines in plant vascular development. Plant Physiology and Biochemistry, 2010, 48, 534-539.	2.8	88
117	A role for ABCB19-mediated polar auxin transport in seedling photomorphogenesis mediated by cryptochrome $\hat{a} \in f1$ and phytochrome $\hat{a} \in fB$. Plant Journal, 2010, 62, 179-191.	2.8	77
118	Hormonal control of the shoot stem-cell niche. Nature, 2010, 465, 1089-1092.	13.7	421
119	Homologues of the <i>Arabidopsis thaliana SHI/STY/LRP1</i> genes control auxin biosynthesis and affect growth and development in the moss <i>Physcomitrella patens</i> . Development (Cambridge), 2010, 137, 1275-1284.	1.2	97
120	Cytokinin Regulation of Auxin Synthesis in <i>Arabidopsis</i> Involves a Homeostatic Feedback Loop Regulated via Auxin and Cytokinin Signal Transduction Â. Plant Cell, 2010, 22, 2956-2969.	3.1	247
121	Auxin Metabolism and Function in the Multicellular Brown Alga <i>Ectocarpus siliculosus</i> Â Â. Plant Physiology, 2010, 153, 128-144.	2.3	103
122	Methods of Plant Hormone Analysis. , 2010, , 717-740.		14
123	Nitrate-Regulated Auxin Transport by NRT1.1 Defines a Mechanism for Nutrient Sensing in Plants. Developmental Cell, 2010, 18, 927-937.	3.1	870
124	REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16883-16888.	3.3	226
125	Control of bud activation by an auxin transport switch. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17431-17436.	3.3	319
126	Quantification of indole-3-acetic acid from plant associated Bacillus spp. and their phytostimulatory effect on Vigna radiata (L.). World Journal of Microbiology and Biotechnology, 2009, 25, 519-526.	1.7	56

#	Article	IF	CITATIONS
127	Auxin transport into cotyledons and cotyledon growth depend similarly on the ABCB19 Multidrug Resistanceâ€like transporter. Plant Journal, 2009, 60, 91-101.	2.8	50
128	A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature, 2009, 459, 583-586.	13.7	237
129	Local auxin biosynthesis modulates gradient-directed planar polarity in Arabidopsis. Nature Cell Biology, 2009, 11, 731-738.	4.6	153
130	An Auxin Gradient and Maximum in the <i>Arabidopsis</i> Root Apex Shown by High-Resolution Cell-Specific Analysis of IAA Distribution and Synthesis. Plant Cell, 2009, 21, 1659-1668.	3.1	439
131	The AUXIN BINDING PROTEIN 1 Is Required for Differential Auxin Responses Mediating Root Growth. PLoS ONE, 2009, 4, e6648.	1.1	124
132	The auxin influx carrier LAX3 promotes lateral root emergence. Nature Cell Biology, 2008, 10, 946-954.	4.6	715
133	Inhibited polar auxin transport results in aberrant embryo development in Norway spruce. New Phytologist, 2008, 177, 356-366.	3.5	69
134	Auxin can act independently of <i>CRC</i> , <i>LUG</i> , <i>SEU</i> , <i>SPT</i> and <i>STY1</i> in style development but not apicalâ€basal patterning of the <i>Arabidopsis</i> gynoecium. New Phytologist, 2008, 180, 798-808.	3.5	86
135	Rapid Synthesis of Auxin via a New Tryptophan-Dependent Pathway Is Required for Shade Avoidance in Plants. Cell, 2008, 133, 164-176.	13.5	928
136	Cytokinin signaling regulates cambial development in poplar. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20032-20037.	3.3	245
137	Requirement of B2-Type <i>Cyclin-Dependent Kinases</i> for Meristem Integrity in <i>Arabidopsis thaliana</i> . Plant Cell, 2008, 20, 88-100.	3.1	181
138	Disruptions in AUX1-Dependent Auxin Influx Alter Hypocotyl Phototropism in Arabidopsis. Molecular Plant, 2008, 1, 129-144.	3.9	53
139	Ethylene Regulates Root Growth through Effects on Auxin Biosynthesis and Transport-Dependent Auxin Distribution. Plant Cell, 2007, 19, 2197-2212.	3.1	682
140	Ethylene Upregulates Auxin Biosynthesis in <i>Arabidopsis</i> Seedlings to Enhance Inhibition of Root Cell Elongation. Plant Cell, 2007, 19, 2186-2196.	3.1	536
141	Ubiquitin Lysine 63 Chain–Forming Ligases Regulate Apical Dominance in Arabidopsis. Plant Cell, 2007, 19, 1898-1911.	3.1	97
142	A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 236-241.	3.3	210
143	Vectorial Information for Arabidopsis Planar Polarity Is Mediated by Combined AUX1, EIN2, and GNOM Activity. Current Biology, 2006, 16, 2143-2149.	1.8	141
144	Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1627-1632.	3.3	330

#	Article	IF	CITATIONS
145	Maintenance of Embryonic Auxin Distribution for Apical-Basal Patterning by PIN-FORMED–Dependent Auxin Transport in Arabidopsis. Plant Cell, 2005, 17, 2517-2526.	3.1	135
146	Cell Cycle Progression in the Pericycle Is Not Sufficient for SOLITARY ROOT/IAA14-Mediated Lateral Root Initiation in Arabidopsis thaliana Â. Plant Cell, 2005, 17, 3035-3050.	3.1	309
147	Auxin and Light Control of Adventitious Rooting in Arabidopsis Require ARGONAUTE1. Plant Cell, 2005, 17, 1343-1359.	3.1	339
148	Sites and Regulation of Auxin Biosynthesis in Arabidopsis Roots. Plant Cell, 2005, 17, 1090-1104.	3.1	466
149	A PINOID-Dependent Binary Switch in Apical-Basal PIN Polar Targeting Directs Auxin Efflux. Science, 2004, 306, 862-865.	6.0	703
150	A Family of Auxin-Conjugate Hydrolases That Contributes to Free Indole-3-Acetic Acid Levels during Arabidopsis Germination. Plant Physiology, 2004, 135, 978-988.	2.3	220
151	Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. , 2002, , 249-272.		13
152	FLOOZY of petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture. Genes and Development, 2002, 16, 753-763.	2.7	166
153	AtPIN4 Mediates Sink-Driven Auxin Gradients and Root Patterning in Arabidopsis. Cell, 2002, 108, 661-673.	13.5	763
154	Cell Polarity Signaling in Arabidopsis Involves a BFA-Sensitive Auxin Influx Pathway. Current Biology, 2002, 12, 329-334.	1.8	131
155	Shoot-derived auxin is essential for early lateral root emergence inArabidopsisseedlings. Plant Journal, 2002, 29, 325-332.	2.8	463
156	Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant Journal, 2002, 28, 465-474.	2.8	531
157	Title is missing!. Plant Molecular Biology, 2002, 49, 249-272.	2.0	145
158	Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Molecular Biology, 2002, 50, 309-332.	2.0	191
159	Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Molecular Biology, 2002, 49, 249-72.	2.0	70
160	Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes and Development, 2001, 15, 2648-2653.	2.7	571
161	Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene. Genes and Development, 2001, 15, 1577-1588.	2.7	169
162	Developmental Regulation of Indole-3-Acetic Acid Turnover in Scots Pine Seedlings. Plant Physiology, 2001, 125, 464-475.	2.3	99

#	Article	IF	CITATIONS
163	The Xerobranching Response Represses Lateral Root Formation When Roots Are Not in Contact With Water. SSRN Electronic Journal, 0, , .	0.4	1