
Francesco Greco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8569648/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temporary Tattoo pH Sensor with pHâ€Responsive Hydrogel via Initiated Chemical Vapor Deposition. Advanced Materials Technologies, 2022, 7, 2100717.	3.0	16
2	Laser-Induced Graphene and Its Applications in Soft (Bio)Sensors. Carbon Materials, 2022, , 111-133.	0.2	1
3	Ultraconformable organic devices. , 2021, , 437-478.		3
4	Ultrathin, Ultra onformable, and Freeâ€6tanding Tattooable Organic Lightâ€Emitting Diodes. Advanced Electronic Materials, 2021, 7, 2001145.	2.6	19
5	Toward the Use of Temporary Tattoo Electrodes for Impedancemetric Respiration Monitoring and Other Electrophysiological Recordings on Skin. Sensors, 2021, 21, 1197.	2.1	20
6	All-Polymer Printed Low-Cost Regenerative Nerve Cuff Electrodes. Frontiers in Bioengineering and Biotechnology, 2021, 9, 615218.	2.0	6
7	Multiresponsive Soft Actuators Based on a Thermoresponsive Hydrogel and Embedded Laser-Induced Graphene. ACS Applied Polymer Materials, 2021, 3, 1809-1818.	2.0	25
8	Three-Dimensional (3D) Laser-Induced Graphene: Structure, Properties, and Application to Chemical Sensing. ACS Applied Materials & amp; Interfaces, 2021, 13, 30245-30260.	4.0	128
9	Temporary Tattoo Approach for a Transferable Printed Organic Photodiode. ACS Applied Electronic Materials, 2021, 3, 2652-2660.	2.0	5
10	Capacitive Coupling of Conducting Polymer Tattoo Electrodes with the Skin. Advanced Materials Interfaces, 2021, 8, 2100352.	1.9	8
11	Printed and Laser-Scribed Stretchable Conductors on Thin Elastomers for Soft and Wearable Electronics. Frontiers in Materials, 2021, 8, .	1.2	2
12	UStEMG: an Ultrasound Transparent Tattoo-based sEMG System for Unobtrusive Parallel Acquisitions of Muscle Electro-mechanics. , 2021, 2021, 7077-7082.		3
13	Applicability of Vapor-Deposited Thermoresponsive Hydrogel Thin Films in Ultrafast Humidity Sensors/Actuators. ACS Applied Polymer Materials, 2020, 2, 1160-1168.	2.0	23
14	Temporary tattoo as unconventional substrate for conformable and transferable electronics on skin and beyond. Multifunctional Materials, 2020, 3, 032003.	2.4	25
15	Conducting polymer tattoo electrodes in clinical electro- and magneto-encephalography. Npj Flexible Electronics, 2020, 4, .	5.1	69
16	Stretchable and Skin-Conformable Conductors Based on Polyurethane/Laser-Induced Graphene. ACS Applied Materials & Interfaces, 2020, 12, 19855-19865.	4.0	71
17	Inkjet-printed PEDOT:PSS multi-electrode arrays for low-cost <i>in vitro</i> electrophysiology. Lab on A Chip, 2019, 19, 3776-3786.	3.1	71
18	Tattooâ€Paper Transfer as a Versatile Platform for Allâ€Printed Organic Edible Electronics. Advanced Materials, 2018, 30, e1706091.	11.1	92

FRANCESCO GRECO

#	Article	IF	CITATIONS
19	Tattoo‣ike Transferable Hole Selective Electrodes for Highly Efficient, Solutionâ€Processed Organic Indoor Photovoltaics. Advanced Electronic Materials, 2018, 4, 1700325.	2.6	19
20	Ultraconformable Temporary Tattoo Electrodes for Electrophysiology. Advanced Science, 2018, 5, 1700771.	5.6	136
21	Approximating gecko setae via direct laser lithography. Smart Materials and Structures, 2018, 27, 075009.	1.8	16
22	Mechanical and electro-mechanical properties of EAP actuators with inkjet printed electrodes. Synthetic Metals, 2018, 246, 122-127.	2.1	8
23	Ultraconformable Freestanding Capacitors Based on Ultrathin Polyvinyl Formal Films. Advanced Electronic Materials, 2018, 4, 1800215.	2.6	10
24	Low-voltage dielectric elastomer actuators with stretchable electrodes fabricated by supersonic cluster beam implantation. Journal of Applied Physics, 2018, 124, .	1.1	12
25	Ionic Strength Responsive Sulfonated Polystyrene Opals. ACS Applied Materials & Interfaces, 2017, 9, 4818-4827.	4.0	34
26	Ultra-conformable Organic Field-Effect Transistors and circuits for epidermal electronic applications. Organic Electronics, 2017, 46, 60-67.	1.4	44
27	Topographical and Electrical Stimulation of Neuronal Cells through Microwrinkled Conducting Polymer Biointerfaces. Macromolecular Bioscience, 2017, 17, 1700128.	2.1	17
28	Air Trapping Mechanism in Artificial Salvinia-Like Micro-Hairs Fabricated via Direct Laser Lithography. Micromachines, 2017, 8, 366.	1.4	8
29	Dry Adhesion of Artificial Gecko Setae Fabricated via Direct Laser Lithography. Lecture Notes in Computer Science, 2017, , 631-636.	1.0	6
30	Back Cover: Plasma Process. Polym. 12â^•2016. Plasma Processes and Polymers, 2016, 13, 1250-1250.	1.6	0
31	Plasma assisted deposition of freeâ€standing nanofilms for biomedical applications. Plasma Processes and Polymers, 2016, 13, 1224-1229.	1.6	9
32	Neuronal Alignment and Outgrowth on Microwrinkled Conducting Polymer Substrates. Materials Research Society Symposia Proceedings, 2015, 1795, 13-18.	0.1	0
33	Tattoo Conductive Polymer Nanosheets for Skin ontact Applications. Advanced Healthcare Materials, 2015, 4, 983-990.	3.9	79
34	3D Micropatterned Surface Inspired by <i>Salvinia molesta</i> via Direct Laser Lithography. ACS Applied Materials & Interfaces, 2015, 7, 25560-25567.	4.0	103
35	Toward a New Generation of Electrically Controllable Hygromorphic Soft Actuators. Advanced Materials, 2015, 27, 1668-1675.	11.1	267
36	Electrically responsive photonic crystals: a review. Journal of Materials Chemistry C, 2015, 3, 8449-8467.	2.7	116

FRANCESCO GRECO

#	Article	IF	CITATIONS
37	A soft, stretchable and conductive biointerface for cell mechanobiology. Biomedical Microdevices, 2015, 17, 46.	1.4	17
38	Roll to roll processing of ultraconformable conducting polymer nanosheets. Journal of Materials Chemistry C, 2015, 3, 6539-6548.	2.7	68
39	Conducting Shrinkable Nanocomposite Based on Au-Nanoparticle Implanted Plastic Sheet: Tunable Thermally Induced Surface Wrinkling. ACS Applied Materials & Interfaces, 2015, 7, 7060-7065.	4.0	33
40	Fabrication of layered polydimethylsiloxane/perfluoropolyether microfluidic devices with solvent compatibility and valve functionality. Microfluidics and Nanofluidics, 2013, 15, 753-762.	1.0	7
41	Patterned Free-Standing Conductive Nanofilms for Ultraconformable Circuits and Smart Interfaces. ACS Applied Materials & Interfaces, 2013, 5, 9461-9469.	4.0	35
42	Liquid single crystal elastomer/conducting polymer bilayer composite actuator: modelling and experiments. Soft Matter, 2013, 9, 11405.	1.2	42
43	Microwrinkled Conducting Polymer Interface for Anisotropic Multicellular Alignment. ACS Applied Materials & Interfaces, 2013, 5, 573-584.	4.0	106
44	Characterization of Free-Standing PEDOT:PSS/Iron Oxide Nanoparticle Composite Thin Films and Application As Conformable Humidity Sensors. ACS Applied Materials & Interfaces, 2013, 5, 6324-6332.	4.0	106
45	Thin film free-standing PEDOT:PSS/SU8 bilayer microactuators. Journal of Micromechanics and Microengineering, 2013, 23, 117004.	1.5	29
46	Soft, Stretchable and Conductive Biointerfaces for Bio-hybrid Tactile Sensing Investigation. Lecture Notes in Computer Science, 2013, , 353-355.	1.0	2
47	Free-Standing PEDOT:PSS/PLA Bilayer Nanosheets with Ink-Jet Patterned Microelectrodes: Towards the Development of Ultra-Thin, Conformable, Floating Circuits and Smart Biointerfaces Materials Research Society Symposia Proceedings, 2013, 1530, 1.	0.1	1
48	Reversible Heat-Induced Microwrinkling of PEDOT:PSS Nanofilm Surface Over a Monodomain Liquid Crystal Elastomer. Molecular Crystals and Liquid Crystals, 2013, 572, 40-49.	0.4	12
49	Bioinspired Design and Energetic Feasibility of an Autonomous Swimming Microrobot. Lecture Notes in Computer Science, 2013, , 415-417.	1.0	0
50	Anisotropic Cellular Alignment on Nano-Wrinkled Polymeric Surface. Materials Research Society Symposia Proceedings, 2012, 1415, 54.	0.1	2
51	Sacrificial Layer and Supporting Layer Techniques for the Fabrication of Ultra-Thin Free-Standing PEDOT:PSS Nanosheets. Materials Research Society Symposia Proceedings, 2012, 1403, 55.	0.1	5
52	Micro and Nanowrinkled Conductive Polymer Surfaces on Shape-memory Polymer Substrates: Tuning of Surface Microfeatures Towards Smart Biointerfaces Materials Research Society Symposia Proceedings, 2012, 1411, 13.	0.1	2
53	Bending actuation of a composite liquid crystal elastomer via direct Joule heating. , 2012, , .		2
54	Introduction to Active Smart Materials for Biomedical Applications. Nanomedicine and Nanotoxicology, 2012, , 1-27.	0.1	9

FRANCESCO GRECO

#	Article	IF	CITATIONS
55	Micro-wrinkled palladium surface for hydrogen sensing and switched detection of lower flammability limit. International Journal of Hydrogen Energy, 2012, 37, 17529-17539.	3.8	31
56	Ultra-thin conductive free-standing PEDOT/PSS nanofilms. Soft Matter, 2011, 7, 10642.	1.2	173
57	Freestanding Functionalized Nanofilms for Biomedical Applications. Procedia Computer Science, 2011, 7, 337-339.	1.2	6
58	The Relevance of the Collaborative Effect in Determining the Performances of Photorefractive Polymer Materials. ChemPhysChem, 2010, 11, 460-465.	1.0	5
59	A very efficient and stable supramolecular organic blend having a very high value of the optical gain for photorefractivity applications. IOP Conference Series: Materials Science and Engineering, 2009, 6, 012034.	0.3	0
60	Unconditionally stable indole-derived glass blends having very high photorefractive gain: the role of intermolecular interactions. Applied Optics, 2008, 47, 6680.	2.1	6
61	Photorefractivity of poly-N-vinylindole-based materials as compared with that of poly-N-vinylcarbazole-based blends. Applied Optics, 2006, 45, 7928.	2.1	12
62	An indole-based low molecular weight glass-former giving materials with high cooperative photorefractive optical gain. , 2006, 6192, 483.		1
63	Synthesis and electrooptical characterization of polysiloxanes containing indolyl groups acting as photoconductive substrates for photorefractive materials. E-Polymers, 2004, 4, .	1.3	1
64	Hepatitis C virus infection in patients with nonâ€Hodgkin's lymphoma. British Journal of Haematology, 1994, 88, 392-394.	1.2	455