Chider Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8569300/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	mTOR Signaling in the Regulation of CD4+ T Cell Subsets in Periodontal Diseases. Frontiers in Immunology, 2022, 13, 827461.	2.2	6
2	Metabolic Reconfiguration Activates Stemness and Immunomodulation of PDLSCs. International Journal of Molecular Sciences, 2022, 23, 4038.	1.8	11
3	Proteomic analysis of MSCâ€derived apoptotic vesicles identifies Fas inheritance to ameliorate haemophilia a via activating platelet functions. Journal of Extracellular Vesicles, 2022, 11, .	5.5	28
4	Autophagy controls mesenchymal stem cell therapy in psychological stress colitis mice. Autophagy, 2021, 17, 2586-2603.	4.3	15
5	Human–chimpanzee fused cells reveal cis-regulatory divergence underlying skeletal evolution. Nature Genetics, 2021, 53, 467-476.	9.4	46
6	Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomaterialia, 2021, 122, 306-324.	4.1	203
7	RGD-Modified Alginate–GelMA Hydrogel Sheet Containing Gingival Mesenchymal Stem Cells: A Unique Platform for Wound Healing and Soft Tissue Regeneration. ACS Biomaterials Science and Engineering, 2021, 7, 3774-3782.	2.6	27
8	Whitlockite-Enabled Hydrogel for Craniofacial Bone Regeneration. ACS Applied Materials & Interfaces, 2021, 13, 35342-35355.	4.0	13
9	Editorial: Advanced Materials for the Restoration and Reconstruction of Dental Functions. Frontiers in Bioengineering and Biotechnology, 2021, 9, 756860.	2.0	2
10	Harnessing Dental Stem Cell Immunoregulation Using Cell-Laden Biomaterials. Journal of Dental Research, 2021, 100, 568-575.	2.5	6
11	Bioactive glassâ€containing hydrogel delivery system for osteogenic differentiation of human dental pulp stem cells. Journal of Biomedical Materials Research - Part A, 2020, 108, 557-564.	2.1	20
12	Oral Mucositis: An Update on Innate Immunity and New Interventional Targets. Journal of Dental Research, 2020, 99, 1122-1130.	2.5	24
13	Robustness Testing of Mesenchymal Stem Cell Monotherapy Following Vascularized Composite Allotransplantation. Journal of Reconstructive Microsurgery, 2020, 36, 397-402.	1.0	1
14	Microenvironment Can Induce Development of Auditory Progenitor Cells from Human Gingival Mesenchymal Stem Cells. ACS Biomaterials Science and Engineering, 2020, 6, 2263-2273.	2.6	6
15	Mechanical force-driven TNFα endocytosis governs stem cell homeostasis. Bone Research, 2020, 8, 44.	5.4	13
16	Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. ELife, 2020, 9, .	2.8	191
17	Oral Rehabilitation of Patients Sustaining Orofacial Injuries: The UPenn Initiative. Advances in Dental Research, 2019, 30, 50-56.	3.6	8
18	Periarticular Mesenchymal Progenitors Initiate and Contribute to Secondary Ossification Center Formation During Mouse Long Bone Development. Stem Cells, 2019, 37, 677-689.	1.4	43

CHIDER CHEN

#	Article	IF	CITATIONS
19	Diabetes-Induced NF-κB Dysregulation in Skeletal Stem Cells Prevents Resolution of Inflammation. Diabetes, 2019, 68, 2095-2106.	0.3	28
20	Pulp Stem Cell–Mediated Functional Pulp Regeneration. Journal of Dental Research, 2019, 98, 27-35.	2.5	92
21	PD-1 is required to maintain stem cell properties in human dental pulp stem cells. Cell Death and Differentiation, 2018, 25, 1350-1360.	5.0	31
22	Ecological Balance of Oral Microbiota Is Required to Maintain Oral Mesenchymal Stem Cell Homeostasis. Stem Cells, 2018, 36, 551-561.	1.4	32
23	The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing. Science Translational Medicine, 2018, 10, .	5.8	131
24	Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors. Cell Research, 2018, 28, 918-933.	5.7	165
25	Tet1 and Tet2 maintain mesenchymal stem cell homeostasis via demethylation of the P2rX7 promoter. Nature Communications, 2018, 9, 2143.	5.8	85
26	Mesenchymal stem cell transplantation in tight-skin mice identifies miR-151-5p as a therapeutic target for systemic sclerosis. Cell Research, 2017, 27, 559-577.	5.7	89
27	Mesenchymal Stem Cells and Their Role in Dental Medicine. Dental Clinics of North America, 2017, 61, 161-172.	0.8	12
28	Dental and orofacial mesenchymal stem cells in craniofacial regeneration: The prosthodontist's point of view. Journal of Prosthetic Dentistry, 2017, 118, 455-461.	1.1	27
29	Human Periodontal Ligament―and Gingivaâ€derived Mesenchymal Stem Cells Promote Nerve Regeneration When Encapsulated in Alginate/Hyaluronic Acid 3D Scaffold. Advanced Healthcare Materials, 2017, 6, 1700670.	3.9	59
30	Alginate/hyaluronic acid hydrogel delivery system characteristics regulate the differentiation of periodontal ligament stem cells toward chondrogenic lineage. Journal of Materials Science: Materials in Medicine, 2017, 28, 162.	1.7	47
31	Hydrogel elasticity and microarchitecture regulate dental-derived mesenchymal stem cell-host immune system cross-talk. Acta Biomaterialia, 2017, 60, 181-189.	4.1	49
32	Nanoindentation modulus of murine cartilage: a sensitive indicator of the initiation and progression of post-traumatic osteoarthritis. Osteoarthritis and Cartilage, 2017, 25, 108-117.	0.6	70
33	Microbiota regulates bone marrow mesenchymal stem cell lineage differentiation and immunomodulation. Stem Cell Research and Therapy, 2017, 8, 213.	2.4	33
34	Gingival Mesenchymal Stem Cell (GMSC) Delivery System Based on RGDâ€Coupled Alginate Hydrogel with Antimicrobial Properties: A Novel Treatment Modality for Periâ€Implantitis. Journal of Prosthodontics, 2016, 25, 105-115.	1.7	69
35	Chronic High Dose Alcohol Induces Osteopenia via Activation of mTOR Signaling in Bone Marrow Mesenchymal Stem Cells. Stem Cells, 2016, 34, 2157-2168.	1.4	51
36	The mechanosensor of mesenchymal stem cells: mechanosensitive channel or cytoskeleton?. Stem Cell Research and Therapy, 2016, 7, 140.	2.4	23

CHIDER CHEN

#	Article	IF	CITATIONS
37	Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors. Annals of Biomedical Engineering, 2016, 44, 1908-1920.	1.3	71
38	Regulation of the Stem Cell–Host Immune System Interplay Using Hydrogel Coencapsulation System with an Antiâ€Inflammatory Drug. Advanced Functional Materials, 2015, 25, 2296-2307.	7.8	66
39	Acetylsalicylic Acid Treatment Improves Differentiation and Immunomodulation of SHED. Journal of Dental Research, 2015, 94, 209-218.	2.5	58
40	Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells. Journal of Materials Science: Materials in Medicine, 2015, 26, 153.	1.7	146
41	Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass. Cell Death and Differentiation, 2015, 22, 1654-1664.	5.0	86
42	Hydrogen Sulfide Promotes Tet1- and Tet2-Mediated Foxp3 Demethylation to Drive Regulatory T Cell Differentiation and Maintain Immune Homeostasis. Immunity, 2015, 43, 251-263.	6.6	276
43	MSC Transplantation Improves Osteopenia via Epigenetic Regulation of Notch Signaling in Lupus. Cell Metabolism, 2015, 22, 606-618.	7.2	195
44	mTOR inhibition rescues osteopenia in mice with systemic sclerosis. Journal of Experimental Medicine, 2015, 212, 73-91.	4.2	67
45	mTOR inhibition rescues osteopenia in mice with systemic sclerosis. Journal of Cell Biology, 2015, 208, 2081OIA234.	2.3	0
46	Transplantation of SHED Prevents Bone Loss in the Early Phase of Ovariectomy-induced Osteoporosis. Journal of Dental Research, 2014, 93, 1124-1132.	2.5	51
47	Application of stem cells derived from the periodontal ligament orÂgingival tissue sources for tendon tissue regeneration. Biomaterials, 2014, 35, 2642-2650.	5.7	111
48	Telomerase governs immunomodulatory properties of mesenchymal stem cells by regulating <scp>FAS</scp> ligand expression. EMBO Molecular Medicine, 2014, 6, 322-334.	3.3	45
49	Encapsulated dentalâ€derived mesenchymal stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2013, 101, 3285-3294.	2.1	80
50	Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration. Acta Biomaterialia, 2013, 9, 9343-9350.	4.1	96
51	Mesenchymal stem cells inhibit multiple myeloma cells via the Fas/Fas ligand pathway. Stem Cell Research and Therapy, 2013, 4, 111.	2.4	44
52	Co-encapsulation of anti-BMP2 monoclonal antibody and mesenchymal stem cells in alginate microspheres for bone tissue engineering. Biomaterials, 2013, 34, 6572-6579.	5.7	121
53	Bone Regeneration Potential of Stem Cells Derived from Periodontal Ligament or Gingival Tissue Sources Encapsulated in RGD-Modified Alginate Scaffold. Tissue Engineering - Part A, 2013, 20, 131106060201007.	1.6	96
54	A subset of IL-17+ mesenchymal stem cells possesses anti-Candida albicans effect. Cell Research, 2013, 23, 107-121.	5.7	72

CHIDER CHEN

#	Article	lF	CITATIONS
55	IFN-γ and TNF-α Synergistically Induce Mesenchymal Stem Cell Impairment and Tumorigenesis via NFκB Signaling. Stem Cells, 2013, 31, 1383-1395.	1.4	122
56	Gingivae Contain Neural-crest- and Mesoderm-derived Mesenchymal Stem Cells. Journal of Dental Research, 2013, 92, 825-832.	2.5	139
57	IL-17–Mediated M1/M2 Macrophage Alteration Contributes to Pathogenesis of Bisphosphonate-Related Osteonecrosis of the Jaws. Clinical Cancer Research, 2013, 19, 3176-3188.	3.2	126
58	Mesenchymal-Stem-Cell-Induced Immunoregulation Involves FAS-Ligand-/FAS-Mediated T Cell Apoptosis. Cell Stem Cell, 2012, 10, 544-555.	5.2	608
59	Lineage Differentiation of Mesenchymal Stem Cells from Dental Pulp, Apical Papilla, and Periodontal Ligament. Methods in Molecular Biology, 2012, 887, 111-121.	0.4	46
60	Technetium-99 Conjugated with Methylene Diphosphonate Ameliorates Ovariectomy-Induced Osteoporotic Phenotype without Causing Osteonecrosis in the Jaw. Calcified Tissue International, 2012, 91, 400-408.	1.5	23
61	Alginate hydrogel as a promising scaffold for dental-derived stem cells: an in vitro study. Journal of Materials Science: Materials in Medicine, 2012, 23, 3041-3051.	1.7	111
62	Characterization of bone marrow derived mesenchymal stem cells in suspension. Stem Cell Research and Therapy, 2012, 3, 40.	2.4	77
63	Basic fibroblast growth factor inhibits osteogenic differentiation of stem cells from human exfoliated deciduous teeth through ERK signaling. Oral Diseases, 2012, 18, 285-292.	1.5	36
64	Mesenchymal stem cell–based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nature Medicine, 2011, 17, 1594-1601.	15.2	551
65	Mouse Mandible Contains Distinctive Mesenchymal Stem Cells. Journal of Dental Research, 2011, 90, 317-324.	2.5	96
66	Cell-based immunotherapy with mesenchymal stem cells cures bisphosphonate-related osteonecrosis of the jaw–like disease in mice. Journal of Bone and Mineral Research, 2010, 25, 1668-1679.	3.1	182
67	Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Research and Therapy, 2010, 1, 5.	2.4	280
68	Exosomes from TNF-Î ⁻ -Treated Human Gingiva-Derived MSCs Inhibit Periodontal Bone Loss Via CD73 and MiR-1260b-Mediated Attenuation of Inflammation. SSRN Electronic Journal, 0, , .	0.4	0