
Sonia Martinez-Paramo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8569268/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of pretreatments for solubilisation of components and recovery of fermentable monosaccharides from microalgae biomass grown in piggery wastewater. Chemosphere, 2021, 268, 129330.	8.2	7
2	Cryobanking of aquatic species. Aquaculture, 2017, 472, 156-177.	3.5	170
3	Improvement of the cryopreservation protocols for the dusky grouper, Epinephelus marginatus. Aquaculture, 2017, 470, 207-213.	3.5	11
4	Comparative evaluation of piggery wastewater treatment in algal-bacterial photobioreactors under indoor and outdoor conditions. Bioresource Technology, 2017, 245, 483-490.	9.6	75
5	Are coping styles consistent in the teleost fish Sparus aurata through sexual maturation and sex reversal?. Fish Physiology and Biochemistry, 2016, 42, 1441-1452.	2.3	11
6	The Fourth International Workshop on the Biology of Fish Gametes, 17-20 September 2013, Albufeira, Algarve, Portugal: Summary and conclusions. Journal of Applied Ichthyology, 2015, 31, 1-2.	0.7	2
7	Assessment of nutritional supplementation in phospholipids on the reproductive performance of zebrafish, <i>Danio rerio</i> (Hamilton, 1822). Journal of Applied Ichthyology, 2015, 31, 3-9.	0.7	24
8	Factors enhancing fish sperm quality and emerging tools for sperm analysis. Aquaculture, 2014, 432, 389-401.	3.5	172
9	Effect of two sulfur-containing amino acids, taurine and hypotaurine in European sea bass (Dicentrarchus labrax) sperm cryopreservation. Cryobiology, 2013, 66, 333-338.	0.7	50
10	Incorporation of ascorbic acid and α-tocopherol to the extender media to enhance antioxidant system of cryopreserved sea bass sperm. Theriogenology, 2012, 77, 1129-1136.	2.1	89
11	Sea bass sperm freezability is influenced by motility variables and membrane lipid composition but not by membrane integrity and lipid peroxidation. Animal Reproduction Science, 2012, 131, 211-218.	1.5	30
12	Sperm lipid peroxidation is correlated with differences in sperm quality during the reproductive season in precocious European sea bass (Dicentrarchus labrax) males. Aquaculture, 2012, 358-359, 246-252.	3.5	17
13	The influence of certain aminoacids and vitamins on post-thaw fish sperm motility, viability and DNA fragmentation. Animal Reproduction Science, 2011, 125, 189-195.	1.5	133
14	Effect of cryopreservation on fish sperm subpopulations. Cryobiology, 2011, 62, 22-31.	0.7	68
15	Altered gene transcription and telomere length in trout embryo and larvae obtained with DNA cryodamaged sperm. Theriogenology, 2011, 76, 1234-1245.	2.1	57
16	Fertilization capacity with rainbow trout DNA-damaged sperm and embryo developmental success. Reproduction, 2010, 139, 989-997.	2.6	92
17	Cryopreservation of fish sperm: applications and perspectives. Journal of Applied Ichthyology, 2010, 26, 623-635.	0.7	266
18	Detection of early damage of sperm cell membrane in Gilthead seabream (Sparus aurata) with the nuclear stain YO-PRO 1. Journal of Applied Ichthyology, 2010, 26, 794-796.	0.7	9

#	Article	IF	CITATIONS
19	Evaluation of DNA damage as a quality marker for rainbow trout sperm cryopreservation and use of LDL as cryoprotectant. Theriogenology, 2010, 74, 282-289.	2.1	62
20	Cryoprotective effects of antifreeze proteins delivered into zebrafish embryos. Cryobiology, 2009, 58, 128-133.	0.7	36
21	Cryobanking as tool for conservation of biodiversity: Effect of brown trout sperm cryopreservation on the male genetic potential. Theriogenology, 2009, 71, 594-604.	2.1	69
22	Evaluation of oxidative DNA damage promoted by storage in sperm from sex-reversed rainbow trout. Theriogenology, 2009, 71, 605-613.	2.1	93
23	Incorporation of antifreeze proteins into zebrafish embryos by a non-invasive method. Cryobiology, 2008, 56, 216-222.	0.7	20
24	The antifreeze protein type I (AFP I) increases seabream (Sparus aurata) embryos tolerance to low temperatures. Theriogenology, 2007, 68, 284-289.	2.1	39