
Chong-Ming Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8568964/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Gut microbiota specifically mediates the anti-hypercholesterolemic effect of berberine (BBR) and facilitates to predict BBR's cholesterol-decreasing efficacy in patients. Journal of Advanced Research, 2022, 37, 197-208.	4.4	37
2	Orally administered Bi2S3@SiO2 core-shell nanomaterials as gastrointestinal contrast agents and their influence on gut microbiota. Materials Today Bio, 2022, 13, 100178.	2.6	5
3	Equisetin is an anti-obesity candidate through targeting 11β-HSD1. Acta Pharmaceutica Sinica B, 2022, 12, 2358-2373.	5.7	5
4	Standards for Collection, Preservation, and Transportation of Fecal Samples in TCM Clinical Trials. Frontiers in Cellular and Infection Microbiology, 2022, 12, 783682.	1.8	7
5	Deep insights into the gut microbial community of extreme longevity in south Chinese centenarians by ultra-deep metagenomics and large-scale culturomics. Npj Biofilms and Microbiomes, 2022, 8, 28.	2.9	12
6	Targeting gut microbial bile salt hydrolase (BSH) by diet supplements: new insights into dietary modulation of human health. Food and Function, 2022, 13, 7409-7422.	2.1	16
7	Akkermansia muciniphila: A potential novel mechanism of nuciferine to improve hyperlipidemia. Biomedicine and Pharmacotherapy, 2021, 133, 111014.	2.5	46
8	Traditional Chinese medicines differentially modulate the gut microbiota based on their nature (Yao-Xing). Phytomedicine, 2021, 85, 153496.	2.3	28
9	Characterization of Shallow Whole-Metagenome Shotgun Sequencing as a High-Accuracy and Low-Cost Method by Complicated Mock Microbiomes. Frontiers in Microbiology, 2021, 12, 678319.	1.5	20
10	Berberine, a potential prebiotic to indirectly promote Akkermansia growth through stimulating gut mucin secretion. Biomedicine and Pharmacotherapy, 2021, 139, 111595.	2.5	30
11	Perturbation of gut microbiota plays an important role in micro/nanoplastics-induced gut barrier dysfunction. Nanoscale, 2021, 13, 8806-8816.	2.8	86
12	The Gut Microbiota-Produced Indole-3-Propionic Acid Confers the Antihyperlipidemic Effect of Mulberry-Derived 1-Deoxynojirimycin. MSystems, 2020, 5, .	1.7	36
13	The gut microbiota confers the lipid-lowering effect of bitter melon (Momordica charantia L.) In high-fat diet (HFD)-Induced hyperlipidemic mice. Biomedicine and Pharmacotherapy, 2020, 131, 110667.	2.5	20
14	Whole-genome sequence of Phellinus gilvus (mulberry Sanghuang) reveals its unique medicinal values. Journal of Advanced Research, 2020, 24, 325-335.	4.4	24
15	Four-week administration of nicotinemoderately impacts blood metabolic profile and gut microbiota in a diet-dependent manner. Biomedicine and Pharmacotherapy, 2019, 115, 108945.	2.5	26
16	The caffeic acid moiety plays an essential role in attenuating lipid accumulation by chlorogenic acid and its analogues. RSC Advances, 2019, 9, 12247-12254.	1.7	7
17	The pandanus tectorius fruit extract (PTF) modulates the gut microbiota and exerts anti-hyperlipidaemic effects. Phytomedicine, 2019, 58, 152863.	2.3	29
18	Synthesis and In Vitro Evaluation of Caffeoylquinic Acid Derivatives as Potential Hypolipidemic Agents. Molecules, 2019, 24, 964.	1.7	5

CHONG-MING WU

#	Article	IF	CITATIONS
19	Butylene fipronil induces apoptosis in PC12 murine nervous cells via activation of p16â€CDK4/6â€cyclin D1 and mitochondrial apoptotic pathway. Journal of Biochemical and Molecular Toxicology, 2019, 33, e22264.	1.4	4
20	The mulberry-derived 1-deoxynojirimycin (DNJ) inhibits high-fat diet (HFD)-induced hypercholesteremia and modulates the gut microbiota in a gender-specific manner. Journal of Functional Foods, 2019, 52, 63-72.	1.6	16
21	Asperlin Stimulates Energy Expenditure and Modulates Gut Microbiota in HFD-Fed Mice. Marine Drugs, 2019, 17, 38.	2.2	11
22	Cordycepin promotes browning of white adipose tissue through an AMP-activated protein kinase (AMPK)-dependent pathway. Acta Pharmaceutica Sinica B, 2019, 9, 135-143.	5.7	39
23	Phenylpropanoid glucosides from <i>Tadehagi triquetrum</i> inhibit oxLDL-evoked foam cell formation through modulating cholesterol homeostasis in RAW264.7 macrophages. Natural Product Research, 2019, 33, 893-896.	1.0	8
24	Oral administration of rutile and anatase TiO ₂ nanoparticles shifts mouse gut microbiota structure. Nanoscale, 2018, 10, 7736-7745.	2.8	105
25	Agarwood Essential Oil Ameliorates Restrain Stress-Induced Anxiety and Depression by Inhibiting HPA Axis Hyperactivity. International Journal of Molecular Sciences, 2018, 19, 3468.	1.8	42
26	The aqueous extract of Phellinus igniarius (SH) ameliorates dextran sodium sulfate-induced colitis in C57BL/6 mice. PLoS ONE, 2018, 13, e0205007.	1.1	23
27	Lipid- and gut microbiota-modulating effects of graphene oxide nanoparticles in high-fat diet-induced hyperlipidemic mice. RSC Advances, 2018, 8, 31366-31371.	1.7	19
28	The antihyperlipidemic effects of fullerenol nanoparticles via adjusting the gut microbiota in vivo. Particle and Fibre Toxicology, 2018, 15, 5.	2.8	43
29	Chemical Constituents and Pharmacological Activity of Agarwood and Aquilaria Plants. Molecules, 2018, 23, 342.	1.7	87
30	Syringaresinol-4- O - \hat{l}^2 - d -glucoside alters lipid and glucose metabolism in HepG2 cells and C2C12 myotubes. Acta Pharmaceutica Sinica B, 2017, 7, 453-460.	5.7	13
31	Versicotides D–F, new cyclopeptides with lipid-lowering activities. RSC Advances, 2017, 7, 49235-49243.	1.7	22
32	Agarwood Essential Oil Displays Sedative-Hypnotic Effects through the GABAergic System. Molecules, 2017, 22, 2190.	1.7	28
33	Asperlin Inhibits LPS-Evoked Foam Cell Formation and Prevents Atherosclerosis in ApoEâ^'/â^' Mice. Marine Drugs, 2017, 15, 358.	2.2	35
34	Cordycepin stimulates autophagy in macrophages and prevents atherosclerotic plaque formation in ApoE-/- mice. Oncotarget, 2017, 8, 94726-94737.	0.8	23
35	Phenolic metabolites from mangrove-associated Penicillium pinophilum fungus with lipid-lowering effects. RSC Advances, 2016, 6, 21969-21978.	1.7	16
36	Tadehaginosides A–J, Phenylpropanoid Glucosides from <i>Tadehagi triquetrum</i> , Enhance Glucose Uptake via the Upregulation of PPARγ and GLUT-4 in C2C12 Myotubes. Journal of Natural Products, 2016, 79, 1249-1258.	1.5	19

Снолс-Мілс Wu

#	Article	IF	CITATIONS
37	Penipyridones A–F, Pyridone Alkaloids from <i>Penicillium funiculosum</i> . Journal of Natural Products, 2016, 79, 1783-1790.	1.5	26
38	Spiromastixones Inhibit Foam Cell Formation via Regulation of Cholesterol Efflux and Uptake in RAW264.7 Macrophages. Marine Drugs, 2015, 13, 6352-6365.	2.2	30
39	Tadehaginoside modulates lipogenesis and glucose consumption in HepG2 cells. Natural Product Research, 2015, 29, 2287-2290.	1.0	10
40	Lipid-lowering polyketides from a soft coral-derived fungus Cladosporium sp. TZP29. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3606-3609.	1.0	21
41	Chrysin inhibits foam cell formation through promoting cholesterol efflux from RAW264.7 macrophages. Pharmaceutical Biology, 2015, 53, 1481-1487.	1.3	44
42	Varioxiranols A–G and 19- <i>O</i> -Methyl-22-methoxypre-shamixanthone, PKS and Hybrid PKS-Derived Metabolites from a Sponge-Associated <i>Emericella variecolor</i> Fungus. Journal of Natural Products, 2015, 78, 2461-2470.	1.5	42
43	Extracts and lignans of Schisandra chinensis fruit alter lipid and glucose metabolism in vivo and in vitro. Journal of Functional Foods, 2015, 19, 296-307.	1.6	20
44	Chlorogenic Acid Protects against Atherosclerosis in ApoEâ^'/â^' Mice and Promotes Cholesterol Efflux from RAW264.7 Macrophages. PLoS ONE, 2014, 9, e95452.	1.1	80
45	Sesamin Enhances Cholesterol Efflux in RAW264.7 Macrophages. Molecules, 2014, 19, 7516-7527.	1.7	23
46	Chemical Constituents with Antihyperlipidemic Activities from Desmodium triquetrum. Chinese Herbal Medicines, 2014, 6, 324-327.	1.2	5
47	The caffeoylquinic acid-rich Pandanus tectorius fruit extract increases insulin sensitivity and regulates hepatic glucose and lipid metabolism in diabetic db/db mice. Journal of Nutritional Biochemistry, 2014, 25, 412-419.	1.9	60
48	Chartarlactams A–P, Phenylspirodrimanes from the Sponge-Associated Fungus <i>Stachybotrys chartarum</i> with Antihyperlipidemic Activities. Journal of Natural Products, 2014, 77, 138-147.	1.5	86
49	Cordycepin activates <scp>AMP</scp> â€activated protein kinase (<scp>AMPK</scp>) <i>via</i> interaction with the γ1 subunit. Journal of Cellular and Molecular Medicine, 2014, 18, 293-304.	1.6	59
50	Lipid-lowering effects of farnesylquinone and related analogues from the marine-derived Streptomyces nitrosporeus. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5288-5293.	1.0	18
51	Psychrophilins E–H and Versicotide C, Cyclic Peptides from the Marine-Derived Fungus <i>Aspergillus versicolor</i> ZLN-60. Journal of Natural Products, 2014, 77, 2218-2223.	1.5	45
52	Comprehensive chemical analysis of Schisandra chinensis by HPLC–DAD–MS combined with chemometrics. Phytomedicine, 2013, 20, 1135-1143.	2.3	54
53	Anti-Hyperlipidemic Effects and Potential Mechanisms of Action of the Caffeoylquinic Acid-Rich Pandanus tectorius Fruit Extract in Hamsters Fed a High Fat-Diet. PLoS ONE, 2013, 8, e61922.	1.1	72
54	Modulation of Lipogenesis and Glucose Consumption in HepG2 Cells and C2C12 Myotubes by Sophoricoside. Molecules, 2013, 18, 15624-15635.	1.7	32

CHONG-MING WU

#	Article	IF	CITATIONS
55	The adenosine derivative 2′,3′,5′-tri-O-acetyl-N6-(3-hydroxylaniline) adenosine activates AMPK and regulates lipid metabolism in vitro and in vivo. Life Sciences, 2012, 90, 1-7.	2.0	21
56	HRS1 Acts as a Negative Regulator of Abscisic Acid Signaling to Promote Timely Germination of Arabidopsis Seeds. PLoS ONE, 2012, 7, e35764.	1.1	30
57	Hypoglycemic effect of Belamcanda chinensis leaf extract in normal and STZ-induced diabetic rats and its potential active faction. Phytomedicine, 2011, 18, 292-297.	2.3	60
58	Combination of HPLC chromatogram and hypoglycemic effect identifies isoflavones as the principal active fraction of Belamcanda chinensis leaf extract in diabetes treatment. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 371-378.	1.2	39
59	Cordycepin Prevents Hyperlipidemia in Hamsters Fed a High-Fat Diet via Activation of AMP-Activated Protein Kinase. Journal of Pharmacological Sciences, 2010, 113, 395-403.	1.1	106
60	Overexpressing <i>HRS1</i> Confers Hypersensitivity to Low Phosphateâ€Elicited Inhibition of Primary Root Growth in <i>Arabidopsis thaliana</i> . Journal of Integrative Plant Biology, 2009, 51, 382-392.	4.1	57
61	Antihyperglycemic Effect of Cephalotaxus sinensis Leaves and GLUT-4 Translocation Facilitating Activity of Its Flavonoid Constituents. Biological and Pharmaceutical Bulletin, 2007, 30, 1123-1129.	0.6	61
62	1-Deoxynojirimycin (DNJ) Exerts Female-Prefered Anti-Hyperlipidemic Effect <i>via</i> Gender-Specifically Modulation of the Gut Microbiota and Promoted Indole-3-Propionic Acid (IPA) Production. SSRN Electronic Journal, 0, , .	0.4	0