
Housheng Hansen He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8568953/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Subpathologies and genomic classifier for treatment individualization of post-prostatectomy radiotherapy. Urologic Oncology: Seminars and Original Investigations, 2022, 40, 5.e1-5.e13.	1.6	2
2	TRIM21 regulates pyroptotic cell death by promoting Gasdermin D oligomerization. Cell Death and Differentiation, 2022, 29, 439-450.	11.2	33
3	RB1 loss in castration-resistant prostate cancer confers vulnerability to LSD1 inhibition. Oncogene, 2022, 41, 852-864.	5.9	18
4	Exploiting the tumor-suppressive activity of the androgen receptor by CDK4/6 inhibition in castration-resistant prostate cancer. Molecular Therapy, 2022, 30, 1628-1644.	8.2	10
5	Neonatal LTβR signaling is required for the accumulation of eosinophils in the inflamed adult mesenteric lymph node. Mucosal Immunology, 2022, , .	6.0	1
6	N6-Methyladenosine Reader YTHDF1 Promotes ARHGEF2 Translation and RhoA Signaling in Colorectal Cancer. Gastroenterology, 2022, 162, 1183-1196.	1.3	89
7	RNA N6-Methyladenosine Methyltransferase METTL3 Facilitates Colorectal Cancer by Activating the m6A-GLUT1-mTORC1 Axis and Is a Therapeutic Target. Gastroenterology, 2021, 160, 1284-1300.e16.	1.3	161
8	CRISPR screen identifies genes that sensitize AML cells to double-negative T-cell therapy. Blood, 2021, 137, 2171-2181.	1.4	23
9	Pioneer of prostate cancer: past, present and the future of FOXA1. Protein and Cell, 2021, 12, 29-38.	11.0	77
10	Single-cell analysis reveals transcriptomic remodellings in distinct cell types that contribute to human prostate cancer progression. Nature Cell Biology, 2021, 23, 87-98.	10.3	209
11	Colorectal Cancer Cells Enter a Diapause-like DTP State to Survive Chemotherapy. Cell, 2021, 184, 226-242.e21.	28.9	258
12	EZH2 inhibition activates a dsRNA–STING–interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. Nature Cancer, 2021, 2, 444-456.	13.2	118
13	CRISPRi screens reveal a DNA methylation-mediated 3D genome dependent causal mechanism in prostate cancer. Nature Communications, 2021, 12, 1781.	12.8	32
14	Uncovering the dosage-dependent roles of <i>Arid1a</i> in gastric tumorigenesis for combinatorial drug therapy. Journal of Experimental Medicine, 2021, 218, .	8.5	16
15	HNRNPM controls circRNA biogenesis and splicing fidelity to sustain cancer cell fitness. ELife, 2021, 10,	6.0	27
16	SPOP mutation induces DNA methylation via stabilizing GLP/G9a. Nature Communications, 2021, 12, 5716.	12.8	19
17	An androgen receptor switch underlies lineage infidelity in treatment-resistant prostate cancer. Nature Cell Biology, 2021, 23, 1023-1034.	10.3	72
18	CRISPR screens identify cholesterol biosynthesis as a therapeutic target on stemness and drug resistance of colon cancer. Oncogene, 2021, 40, 6601-6613.	5.9	37

HOUSHENG HANSEN HE

#	Article	IF	CITATIONS
19	ZNF545 loss promotes ribosome biogenesis and protein translation to initiate colorectal tumorigenesis in mice. Oncogene, 2021, 40, 6590-6600.	5.9	11
20	Somatic driver mutation prevalence in 1844 prostate cancers identifies ZNRF3 loss as a predictor of metastatic relapse. Nature Communications, 2021, 12, 6248.	12.8	15
21	Androgen receptor and MYC equilibration centralizes on developmental super-enhancer. Nature Communications, 2021, 12, 7308.	12.8	46
22	MAP9 Loss Triggers Chromosomal Instability, Initiates Colorectal Tumorigenesis, and Is Associated with Poor Survival of Patients with Colorectal Cancer. Clinical Cancer Research, 2020, 26, 746-757.	7.0	11
23	The DNA methylation landscape of advanced prostate cancer. Nature Genetics, 2020, 52, 778-789.	21.4	198
24	Chromatin binding of FOXA1 is promoted by LSD1-mediated demethylation in prostate cancer. Nature Genetics, 2020, 52, 1011-1017.	21.4	78
25	Haploinsufficiency of RREB1 causes a Noonan-like RASopathy via epigenetic reprogramming of RAS-MAPK pathway genes. Nature Communications, 2020, 11, 4673.	12.8	19
26	Noncoding mutations target cis-regulatory elements of the FOXA1 plexus in prostate cancer. Nature Communications, 2020, 11, 441.	12.8	51
27	Forkhead domain mutations in FOXA1 drive prostate cancer progression. Cell Research, 2019, 29, 770-772.	12.0	25
28	DNA-Dependent Protein Kinase Drives Prostate Cancer Progression through Transcriptional Regulation of the Wnt Signaling Pathway. Clinical Cancer Research, 2019, 25, 5608-5622.	7.0	17
29	Landscape of Noncoding RNA in Prostate Cancer. Trends in Genetics, 2019, 35, 840-851.	6.7	114
30	N6-methyladenosine mRNA marking promotes selective translation of regulons required for human erythropoiesis. Nature Communications, 2019, 10, 4596.	12.8	42
31	Cistrome Partitioning Reveals Convergence of Somatic Mutations and Risk Variants on Master Transcription Regulators in Primary Prostate Tumors. Cancer Cell, 2019, 36, 674-689.e6.	16.8	52
32	ZBTB7A Mediates the Transcriptional Repression Activity of the Androgen Receptor in Prostate Cancer. Cancer Research, 2019, 79, 5260-5271.	0.9	19
33	Genome-wide germline correlates of the epigenetic landscape of prostate cancer. Nature Medicine, 2019, 25, 1615-1626.	30.7	45
34	ONECUT2 is a driver of neuroendocrine prostate cancer. Nature Communications, 2019, 10, 278.	12.8	143
35	TMPRSS2-ERG activates NO-cGMP signaling in prostate cancer cells. Oncogene, 2019, 38, 4397-4411.	5.9	29
36	Widespread and Functional RNA Circularization in Localized Prostate Cancer. Cell, 2019, 176, 831-843.e22.	28.9	317

3

HOUSHENG HANSEN HE

#	Article	IF	CITATIONS
37	Early-life programming of mesenteric lymph node stromal cell identity by the lymphotoxin pathway regulates adult mucosal immunity. Science Immunology, 2019, 4, .	11.9	23
38	Gastrointestinal transcription factors drive lineage-specific developmental programs in organ specification and cancer. Science Advances, 2019, 5, eaax8898.	10.3	26
39	Orphan noncoding RNAs: novel regulators and cancer biomarkers. Annals of Translational Medicine, 2019, 7, S21-S21.	1.7	1
40	Refined RIP-seq protocol for epitranscriptome analysis with low input materials. PLoS Biology, 2018, 16, e2006092.	5.6	112
41	LSD1 Ablation Stimulates Anti-tumor Immunity and Enables Checkpoint Blockade. Cell, 2018, 174, 549-563.e19.	28.9	473
42	Risk SNP-Mediated Promoter-Enhancer Switching Drives Prostate Cancer through IncRNA PCAT19. Cell, 2018, 174, 564-575.e18.	28.9	264
43	Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell, 2018, 174, 758-769.e9.	28.9	459
44	Reactivation of androgen receptor-regulated lipid biosynthesis drives the progression of castration-resistant prostate cancer. Oncogene, 2018, 37, 710-721.	5.9	69
45	Genomic hallmarks of localized, non-indolent prostate cancer. Nature, 2017, 541, 359-364.	27.8	462
46	Noncoding RNA for personalized prostate cancer treatment: utilizing the â€~dark matters' of the genome. Personalized Medicine, 2017, 14, 159-169.	1.5	0
47	K48-linked KLF4 ubiquitination by E3 ligase Mule controls T-cell proliferation and cell cycle progression. Nature Communications, 2017, 8, 14003.	12.8	25
48	Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5207-E5215.	7.1	266
49	Transcriptional landscape of the human cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3473-3478.	7.1	110
50	LSD1-Mediated Epigenetic Reprogramming Drives CENPE Expression and Prostate Cancer Progression. Cancer Research, 2017, 77, 5479-5490.	0.9	71
51	Variant Set Enrichment: an R package to identify disease-associated functional genomic regions. BioData Mining, 2017, 10, 9.	4.0	17
52	Crucial role of noncoding RNA in driving prostate cancer development and progression. Epigenomics, 2017, 9, 1-3.	2.1	4
53	High-dimensional genomic data bias correction and data integration using MANCIE. Nature Communications, 2016, 7, 11305.	12.8	52
54	Modulation of long noncoding RNAs by risk SNPs underlying genetic predispositions to prostate cancer. Nature Genetics, 2016, 48, 1142-1150.	21.4	196

HOUSHENG HANSEN HE

#	Article	IF	CITATIONS
55	Modeling <i>cis</i> -regulation with a compendium of genome-wide histone H3K27ac profiles. Genome Research, 2016, 26, 1417-1429.	5.5	75
56	Androgen Receptor Tumor Suppressor Function Is Mediated by Recruitment of Retinoblastoma Protein. Cell Reports, 2016, 17, 966-976.	6.4	66
57	Integrative Analysis Reveals the Transcriptional Collaboration between EZH2 and E2F1 in the Regulation of Cancer-Related Gene Expression. Molecular Cancer Research, 2016, 14, 163-172.	3.4	34
58	Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature, 2016, 529, 413-417.	27.8	490
59	SOX9 drives WNT pathway activation in prostate cancer. Journal of Clinical Investigation, 2016, 126, 1745-1758.	8.2	138
60	PLZF, a Tumor Suppressor Genetically Lost in Metastatic Castration-Resistant Prostate Cancer, Is a Mediator of Resistance to Androgen Deprivation Therapy. Cancer Research, 2015, 75, 1944-1948.	0.9	46
61	Lysine-Specific Demethylase 1 Has Dual Functions as a Major Regulator of Androgen Receptor Transcriptional Activity. Cell Reports, 2014, 9, 1618-1627.	6.4	115
62	Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification. Nature Methods, 2014, 11, 73-78.	19.0	195
63	MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. Oncogene, 2014, 33, 2790-2800.	5.9	131
64	Digital Quantification of Gene Expression in Sequential Breast Cancer Biopsies Reveals Activation of an Immune Response. PLoS ONE, 2013, 8, e64225.	2.5	16
65	ERG induces androgen receptor-mediated regulation of SOX9 in prostate cancer. Journal of Clinical Investigation, 2013, 123, 1109-1122.	8.2	227
66	EZH2 Oncogenic Activity in Castration-Resistant Prostate Cancer Cells Is Polycomb-Independent. Science, 2012, 338, 1465-1469.	12.6	748
67	Tet3 CXXC Domain and Dioxygenase Activity Cooperatively Regulate Key Genes for Xenopus Eye and Neural Development. Cell, 2012, 151, 1200-1213.	28.9	227
68	Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics. Genome Research, 2012, 22, 1015-1025.	5.5	161
69	Systematic evaluation of factors influencing ChIP-seq fidelity. Nature Methods, 2012, 9, 609-614.	19.0	156
70	Androgen Receptor Gene Expression in Prostate Cancer Is Directly Suppressed by the Androgen Receptor Through Recruitment of Lysine-Specific Demethylase 1. Cancer Cell, 2011, 20, 457-471.	16.8	387
71	BINOCh: binding inference from nucleosome occupancy changes. Bioinformatics, 2011, 27, 1867-1868.	4.1	25
72	GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature, 2011, 480, 557-560.	27.8	279

#	ARTICLE	IF	CITATIONS
73	Nucleosome dynamics define transcriptional enhancers. Nature Genetics, 2010, 42, 343-347.	21.4	426
74	8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with <i>MYC</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9742-9746.	7.1	353
75	Differentiation-Specific Histone Modifications Reveal Dynamic Chromatin Interactions and Partners for the Intestinal Transcription Factor CDX2. Developmental Cell, 2010, 19, 713-726.	7.0	192
76	Somatic Mutations and Risk-Variants Converge on Cis-Regulatory Elements to Reveal the Cancer Driver Transcription Regulators in Primary Prostate Tumors. SSRN Electronic Journal, 0, , .	0.4	2