Qutuba G Karwi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8568651/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Branched-Chain Amino Acid Metabolism in the Failing Heart. Cardiovascular Drugs and Therapy, 2023, 37, 413-420.	1.3	23
2	CrossTalk proposal: Ketone bodies are an important metabolic fuel for the heart. Journal of Physiology, 2022, 600, 1001-1004.	1.3	10
3	Rebuttal from Gary D. Lopaschuk and Qutuba G. Karwi. Journal of Physiology, 2022, 600, 1009-1009.	1.3	1
4	Concurrent diabetes and heart failure: interplay and novel therapeutic approaches. Cardiovascular Research, 2022, 118, 686-715.	1.8	24
5	Metabolic, structural and biochemical changes in diabetes and the development of heart failure. Diabetologia, 2022, 65, 411-423.	2.9	19
6	Ketones can become the major fuel source for the heart but do not increase cardiac efficiency. Cardiovascular Research, 2021, 117, 1178-1187.	1.8	55
7	Cardiac Energy Metabolism in Heart Failure. Circulation Research, 2021, 128, 1487-1513.	2.0	433
8	379-P: Aldose Reductase Inhibition by AT-001 Prevents Diabetic Cardiomyopathy via Reducing Myocardial Fatty Acid Oxidation Rates. Diabetes, 2021, 70, 379-P.	0.3	1
9	Deletion of BCATm increases insulin-stimulated glucose oxidation in the heart. Metabolism: Clinical and Experimental, 2021, 124, 154871.	1.5	18
10	The Contribution of Cardiac Fatty Acid Oxidation to Diabetic Cardiomyopathy Severity. Cells, 2021, 10, 3259.	1.8	20
11	Ketone metabolism in the failing heart. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158813.	1.2	50
12	Insulin directly stimulates mitochondrial glucose oxidation in the heart. Cardiovascular Diabetology, 2020, 19, 207.	2.7	29
13	Myocardial Ketones Metabolism in Heart Failure. Journal of Cardiac Failure, 2020, 26, 998-1005.	0.7	36
14	Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovascular Diabetology, 2019, 18, 86.	2.7	102
15	Allosteric, transcriptional and post-translational control of mitochondrial energy metabolism. Biochemical Journal, 2019, 476, 1695-1712.	1.7	25
16	Adropin regulates cardiac energy metabolism and improves cardiac function and efficiency. Metabolism: Clinical and Experimental, 2019, 98, 37-48.	1.5	42
17	Weight loss enhances cardiac energy metabolism and function in heart failure associated with obesity. Diabetes, Obesity and Metabolism, 2019, 21, 1944-1955.	2.2	31
18	Cardiac-specific deficiency of the mitochondrial calcium uniporter augments fatty acid oxidation and functional reserve. Journal of Molecular and Cellular Cardiology, 2019, 127, 223-231.	0.9	27

QUTUBA G KARWI

#	Article	IF	CITATIONS
19	Targeting the glucagon receptor improves cardiac function and enhances insulin sensitivity following a myocardial infarction. Cardiovascular Diabetology, 2019, 18, 1.	2.7	98
20	Abstract 856: Mitochondrial Protein Kinase B (akt) Translocation Mediates Insulin-stimulated Cardiac Glucose Oxidation. Circulation Research, 2019, 125, .	2.0	0
21	Pre- and postconditioning the heart with hydrogen sulfide (H2S) against ischemia/reperfusion injury in vivo: a systematic review and meta-analysis. Basic Research in Cardiology, 2018, 113, 6.	2.5	44
22	Caloric restriction limits fatty acid oxidation and improves cardiac function in heart failure associated with obesity. Journal of Molecular and Cellular Cardiology, 2018, 124, 99.	0.9	0
23	Loss of Metabolic Flexibility in the Failing Heart. Frontiers in Cardiovascular Medicine, 2018, 5, 68.	1.1	258
24	AP39, a mitochondria-targeting hydrogen sulfide (H ₂ S) donor, protects against myocardial reperfusion injury independently of salvage kinase signalling. British Journal of Pharmacology, 2017, 174, 287-301.	2.7	69
25	Postconditioning with H 2 S donors: effect on reperfusion-induced ventricular arrhythmias. Journal of Molecular and Cellular Cardiology, 2017, 112, 142.	0.9	0
26	Pharmacological postconditioning against myocardial infarction with a slow-releasing hydrogen sulfide donor, GYY4137. Pharmacological Research, 2016, 111, 442-451.	3.1	54
27	Influence of Molecular Weight and Degree of Deacetylation of Low Molecular Weight Chitosan on the Bioactivity of Oral Insulin Preparations. Marine Drugs, 2015, 13, 1710-1725.	2.2	49