Yuki Nakamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8568537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The phospho-base <i>N</i> -methyltransferases PMT1 and PMT2 produce phosphocholine for leaf growth in phosphorus-starved Arabidopsis. Journal of Experimental Botany, 2022, 73, 2985-2994.	2.4	2
2	Impacts of phosphatidylglycerol on plastid gene expression and light induction of nuclear photosynthetic genes. Journal of Experimental Botany, 2022, 73, 2952-2970.	2.4	6
3	Plant lipids: trends and beyond. Journal of Experimental Botany, 2022, 73, 2715-2720.	2.4	7
4	Phosphate starvation-inducible GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE6 is involved in Arabidopsis root growth. Journal of Experimental Botany, 2022, 73, 2995-3003.	2.4	5
5	Functional divergence of a pair of Arabidopsis phosphoâ€base methyltransferases, <scp>PMT1</scp> and <scp>PMT3</scp> , conferred by distinct Nâ€ŧerminal sequences. Plant Journal, 2022, , .	2.8	1
6	The importance of Arabidopsis PHOSPHOLIPID <i>N</i> -METHYLTRANSFERASE in glycerolipid metabolism and plant growth. Journal of Experimental Botany, 2022, 73, 2971-2984.	2.4	2
7	Membrane lipid remodeling is required for photosystem II function under low CO ₂ . Plant Journal, 2021, 105, 245-253.	2.8	7
8	Nonâ€specific phospholipases C2 and C6 redundantly function in pollen tube growth via triacylglycerol production in Arabidopsis. Plant Journal, 2021, 106, 409-418.	2.8	9
9	Headgroup biosynthesis of phosphatidylcholine and phosphatidylethanolamine in seed plants. Progress in Lipid Research, 2021, 82, 101091.	5.3	19
10	The Four Arabidopsis Choline/Ethanolamine Kinase Isozymes Play Distinct Roles in Metabolism and Development. Plant Physiology, 2020, 183, 152-166.	2.3	8
11	Non-specific phospholipase C (NPC): an emerging class of phospholipase C in plant growth and development. Journal of Plant Research, 2020, 133, 489-497.	1.2	25
12	A Pair of Arabidopsis Diacylglycerol Kinases Essential for Gametogenesis and Endoplasmic Reticulum Phospholipid Metabolism in Leaves and Flowers. Plant Cell, 2020, 32, 2602-2620.	3.1	23
13	Nonâ€specific phospholipases C, NPC2 and NPC6, are required for root growth in Arabidopsis. Plant Journal, 2019, 100, 825-835.	2.8	16
14	LYSOPHOSPHATIDIC ACID ACYLTRANSFERASES 4 and 5 are involved in glycerolipid metabolism and nitrogen starvation response in Arabidopsis. New Phytologist, 2019, 224, 336-351.	3.5	24
15	Expression Profiles of 2 Phosphate Starvation-Inducible Phosphocholine/Phosphoethanolamine Phosphatases, PECP1 and PS2, in Arabidopsis. Frontiers in Plant Science, 2019, 10, 662.	1.7	13
16	Arabidopsis CHOLINE/ETHANOLAMINE KINASE 1 (CEK1) is a primary choline kinase localized at the endoplasmic reticulum (ER) and involved in ER stress tolerance. New Phytologist, 2019, 223, 1904-1917.	3.5	24
17	Membrane lipid polyunsaturation mediated by <i><scp>FATTY ACID DESATURASE</scp> 2</i> (<i><scp>FAD</scp>2</i>) is involved in endoplasmic reticulum stress tolerance in <i>Arabidopsis thaliana</i> . Plant Journal, 2019, 99, 478-493.	2.8	36
18	Triacylglycerol Production in the Snow Algae <i>Chlamydomonas nivalis</i> under Different Nutrient Conditions. Lipids, 2019, 54, 255-262.	0.7	5

Υυκι Νακαμυγα

#	Article	IF	CITATIONS
19	High-Resolution Crystal Structure of Arabidopsis FLOWERING LOCUS T Illuminates Its Phospholipid-Binding Site in Flowering. IScience, 2019, 21, 577-586.	1.9	30
20	A Methyltransferase Trio Essential for Phosphatidylcholine Biosynthesis and Growth. Plant Physiology, 2019, 179, 433-445.	2.3	15
21	Phosphatidylglycerophosphate phosphatase is required for root growth in Arabidopsis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 563-575.	1.2	13
22	A pair of nonspecific phospholipases C, <scp>NPC</scp> 2 and <scp>NPC</scp> 6, are involved in gametophyte development and glycerolipid metabolism in <i>Arabidopsis</i> . New Phytologist, 2018, 219, 163-175.	3.5	26
23	Membrane Lipid Oscillation: An Emerging System of Molecular Dynamics in the Plant Membrane. Plant and Cell Physiology, 2018, 59, 441-447.	1.5	18
24	Arabidopsis Serine Decarboxylase 1 (SDC1) in Phospholipid and Amino Acid Metabolism. Frontiers in Plant Science, 2018, 9, 972.	1.7	8
25	A pair of phosphoâ€base methyltransferases important for phosphatidylcholine biosynthesis in Arabidopsis. Plant Journal, 2018, 96, 1064-1075.	2.8	18
26	Arabidopsis dolichol kinase AtDOK1 is involved in flowering time control. Journal of Experimental Botany, 2017, 68, 3243-3252.	2.4	3
27	Characterization of phosphoethanolamine-N-methyltransferases in green algae. Biochemical and Biophysical Research Communications, 2017, 488, 141-146.	1.0	13
28	Enhanced root growth in phosphateâ€starved Arabidopsis by stimulating <i>de novo</i> phospholipid biosynthesis through the overexpression of <i>LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE 2</i> (<i>LPAT2</i>). Plant, Cell and Environment, 2017, 40, 1807-1818.	2.8	38
29	Plant Phospholipid Diversity: Emerging Functions in Metabolism and Protein–Lipid Interactions. Trends in Plant Science, 2017, 22, 1027-1040.	4.3	119
30	Arabidopsis PECP1 and PS2 are phosphate starvation-inducible phosphocholine phosphatases. Biochemical and Biophysical Research Communications, 2017, 494, 397-401.	1.0	23
31	Editorial: Biotechnology of Microalgae, Based on Molecular Biology and Biochemistry of Eukaryotic Algae and Cyanobacteria. Frontiers in Microbiology, 2017, 8, 118.	1.5	12
32	In vivo Reconstitution of Algal Triacylglycerol Production in Saccharomyces cerevisiae. Frontiers in Microbiology, 2016, 7, 70.	1.5	6
33	Lipids: From Chemical Structures, Biosynthesis, and Analyses to Industrial Applications. Sub-Cellular Biochemistry, 2016, 86, 1-18.	1.0	28
34	Isolation and characterization of a mutant defective in triacylglycerol accumulation in nitrogen-starved Chlamydomonas reinhardtii. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1282-1293.	1.2	10
35	Arabidopsis phosphatidylglycerophosphate phosphatase 1 involved in phosphatidylglycerol biosynthesis and photosynthetic function. Plant Journal, 2016, 88, 1022-1037.	2.8	22
36	The importance of <scp>SERINE DECARBOXYLASE</scp> 1 (<scp>SDC</scp> 1) and ethanolamine biosynthesis during embryogenesis of <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 88, 559-569.	2.8	26

Υυκι Νακαμυγα

#	Article	IF	CITATIONS
37	Characterization of Chlamydomonas reinhardtii phosphatidylglycerophosphate synthase in Synechocystis sp. PCC 6803. Frontiers in Microbiology, 2015, 6, 842.	1.5	11
38	The Choline/Ethanolamine Kinase Family in Arabidopsis: Essential Role of CEK4 in Phospholipid Biosynthesis and Embryo Development. Plant Cell, 2015, 27, 1497-1511.	3.1	66
39	Isolation and characterization of a phosphatidylglycerophosphate phosphatase1, PGPP1, in Chlamydomonas reinhardtii. Plant Physiology and Biochemistry, 2015, 92, 56-61.	2.8	13
40	Phosphatidic acid is a major phospholipid class in reproductive organs of <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2015, 10, e1049790.	1.2	14
41	Function of polar glycerolipids in flower development in Arabidopsis thaliana. Progress in Lipid Research, 2015, 60, 17-29.	5.3	15
42	Arabidopsis <i><scp>DOK</scp>1</i> encodes a functional dolichol kinase involved in reproduction. Plant Journal, 2015, 81, 292-303.	2.8	10
43	Functional Specificity of Cardiolipin Synthase Revealed by the Identification of a Cardiolipin Synthase CrCLS1 in Chlamydomonas reinhardtii. Frontiers in Microbiology, 2015, 6, 1542.	1.5	5
44	Arabidopsis AtPLC2 Is a Primary Phosphoinositide-Specific Phospholipase C in Phosphoinositide Metabolism and the Endoplasmic Reticulum Stress Response. PLoS Genetics, 2015, 11, e1005511.	1.5	78
45	Arabidopsis florigen FT binds to diurnally oscillating phospholipids that accelerate flowering. Nature Communications, 2014, 5, 3553.	5.8	143
46	Floral glycerolipid profiles in homeotic mutants of Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2014, 450, 1272-1275.	1.0	5
47	Inducible Knockdown of <i>MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE1</i> Reveals Roles of Galactolipids in Organelle Differentiation in Arabidopsis Cotyledons Â. Plant Physiology, 2014, 166, 1436-1449.	2.3	59
48	Diurnal and circadian expression profiles of glycerolipid biosynthetic genes in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2014, 9, e29715.	1.2	21
49	Transcriptomic and lipidomic profiles of glycerolipids during <i><scp>A</scp>rabidopsis</i> flower development. New Phytologist, 2014, 203, 310-322.	3.5	51
50	NPC: Nonspecific Phospholipase Cs in Plant Functions. Signaling and Communication in Plants, 2014, , 55-67.	0.5	7
51	Phosphate starvation and membrane lipid remodeling in seed plants. Progress in Lipid Research, 2013, 52, 43-50.	5.3	177
52	Functional study of diacylglycerol acyltransferase type 2 family in <i>Chlamydomonas reinhardtii</i> . FEBS Letters, 2013, 587, 2364-2370.	1.3	67
53	Galactolipid biosynthesis in flowers. , 2013, 54, 29.		6
54	Assaying Plant Phosphatidic Acid Phosphatase Activity. Methods in Molecular Biology, 2013, 1009, 233-240.	0.4	1

Υυκι Νακαμυγα

#	ARTICLE	IF	CITATIONS
55	Phosphatidic Acid Phosphatases in Seed Plants. Plant Cell Monographs, 2010, , 131-141.	0.4	10
56	Chapter 13 Biosynthesis and Function of Monogalactosyldiacylglycerol (MGDG), the Signature Lipid of Chloroplasts. Advances in Photosynthesis and Respiration, 2010, , 185-202.	1.0	10
57	<i>Arabidopsis</i> lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20978-20983.	3.3	247
58	Type A and type B monogalactosyldiacylglycerol synthases are spatially and functionally separated in the plastids of higher plants. Plant Physiology and Biochemistry, 2009, 47, 518-525.	2.8	64
59	Activation of galactolipid biosynthesis in development of pistils and pollen tubes. Plant Physiology and Biochemistry, 2009, 47, 535-539.	2.8	30
60	Biosynthesis and Function of Chloroplast Lipids. Advances in Photosynthesis and Respiration, 2009, , 35-55.	1.0	10
61	Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant Journal, 2008, 56, 28-39.	2.8	229
62	Plastidic Phosphatidic Acid Phosphatases Identified in a Distinct Subfamily of Lipid Phosphate Phosphatases with Prokaryotic Origin. Journal of Biological Chemistry, 2007, 282, 29013-29021.	1.6	96
63	The diacylglycerol forming pathways differ among floral organs of <i>Petunia hybrida</i> . FEBS Letters, 2007, 581, 5475-5479.	1.3	22
64	Comparative Genomic Analysis Revealed a Gene for Monoglucosyldiacylglycerol Synthase, an Enzyme for Photosynthetic Membrane Lipid Synthesis in Cyanobacteria. Plant Physiology, 2006, 141, 1120-1127.	2.3	82
65	A Novel Phosphatidylcholine-hydrolyzing Phospholipase C Induced by Phosphate Starvation in Arabidopsis. Journal of Biological Chemistry, 2005, 280, 7469-7476.	1.6	217
66	Digalactosyldiacylglycerol is a major glycolipid in floral organs of <i>Petunia hybrida</i> . Lipids, 2003, 38, 1107-12.	0.7	53