Thomas A Defalco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8568405/publications.pdf

Version: 2024-02-01

22 papers 1,854 citations

16 h-index 713013 21 g-index

29 all docs

29 docs citations

times ranked

29

2033 citing authors

#	Article	IF	CITATIONS
1	Breaking the code: Ca2+ sensors in plant signalling. Biochemical Journal, 2010, 425, 27-40.	1.7	433
2	The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature, 2020, 585, 569-573.	13.7	208
3	Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature, 2019, 572, 270-274.	13.7	186
4	Molecular mechanisms of early plant pattern-triggered immune signaling. Molecular Cell, 2021, 81, 3449-3467.	4.5	171
5	Phosphocode-dependent functional dichotomy of a common co-receptor in plant signalling. Nature, 2018, 561, 248-252.	13.7	126
6	The Arabidopsis Cyclic Nucleotide-Gated Ion Channels AtCNGC2 and AtCNGC4 Work in the Same Signaling Pathway to Regulate Pathogen Defense and Floral Transition \hat{A} \hat{A} \hat{A} . Plant Physiology, 2013, 163, 611-624.	2.3	114
7	Opening the Gates: Insights into Cyclic Nucleotide-Gated Channel-Mediated Signaling. Trends in Plant Science, 2016, 21, 903-906.	4.3	86
8	Ca ²⁺ signals in plant immunity. EMBO Journal, 2022, 41, e110741.	3.5	82
9	Multiple Calmodulin-binding Sites Positively and Negatively Regulate Arabidopsis CYCLIC NUCLEOTIDE-GATED CHANNEL12. Plant Cell, 2016, 28, tpc.00870.2015.	3.1	81
10	<i>Cr</i> <scp>RLK</scp> 1L receptorâ€like kinases <scp>HERK</scp> 1 and <scp>ANJEA</scp> are female determinants of pollen tube reception. EMBO Reports, 2020, 21, e48466.	2.0	62
11	Calmodulin as a Ca2+-Sensing Subunit of Arabidopsis Cyclic Nucleotide-Gated Channel Complexes. Plant and Cell Physiology, 2017, 58, 1208-1221.	1.5	58
12	Arabidopsis ETHYLENE RESPONSE FACTOR 8 (ERF8) has dual functions in ABA signaling and immunity. BMC Plant Biology, 2018, 18, 211.	1.6	52
13	Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors. ELife, 2022, 11 , .	2.8	44
14	Using GCaMP3 to Study Ca2+ Signaling in Nicotiana Species. Plant and Cell Physiology, 2017, 58, 1173-1184.	1.5	32
15	Characterization of GmCaMK1, a member of a soybean calmodulinâ€binding receptorâ€like kinase family. FEBS Letters, 2010, 584, 4717-4724.	1.3	27
16	A conserved module regulates receptor kinase signalling in immunity and development. Nature Plants, 2022, 8, 356-365.	4.7	27
17	Direct inhibition of phosphate transport by immune signaling in Arabidopsis. Current Biology, 2022, 32, 488-495.e5.	1.8	24
18	Activation loop phosphorylation of a non-RD receptor kinase initiates plant innate immune signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12

#	Article	IF	CITATIONS
19	Studying the many faces of FERONIA. Plant Cell, 2022, , .	3.1	1
20	OUP accepted manuscript. Plant Cell, 2022, , .	3.1	0
21	Inventing the wheel: new insights into resistosome evolution. Plant Cell, 2022, , .	3.1	O
22	Friend and foe alike: Effectors underlying multi-host compatibility of <i>Fusarium oxysporum</i> Plant Cell, 0, , .	3.1	0