
Oscar Lopez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8568202/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Click Chemistry - What's in a Name? Triazole Synthesis and Beyond. Synthesis, 2007, 2007, 1589-1620.	2.3	288
2	Phenolic compounds and antioxidant capacity of virgin olive oil. Food Chemistry, 2014, 163, 289-298.	8.2	140
3	Hydroxytyrosol and Derivatives: Isolation, Synthesis, and Biological Properties. Current Organic Chemistry, 2008, 12, 442-463.	1.6	94
4	Conformational Effects on Glycoside Reactivity:Â Study of the High Reactive Conformer of Glucose. Journal of the American Chemical Society, 2004, 126, 12374-12385.	13.7	82
5	New trends in pest control: the search for greener insecticides. Green Chemistry, 2005, 7, 431.	9.0	79
6	Synthesis of sugar-derived isoselenocyanates, selenoureas, and selenazoles. Tetrahedron, 2009, 65, 2556-2566.	1.9	62
7	Effects of dietary virgin olive oil polyphenols: hydroxytyrosyl acetate and 3, 4-dihydroxyphenylglycol on DSS-induced acute colitis in mice. Journal of Nutritional Biochemistry, 2015, 26, 513-520.	4.2	60
8	Synthesis of O -unprotected glycosyl selenoureas. A new access to bicyclic sugar isoureas. Tetrahedron Letters, 2004, 45, 4081-4084.	1.4	59
9	Diosgenin-based thio(seleno)ureas and triazolyl glycoconjugates as hybrid drugs. Antioxidant and antiproliferative profile. European Journal of Medicinal Chemistry, 2015, 99, 67-81.	5.5	58
10	New tacrine dimers with antioxidant linkers as dual drugs: Anti-Alzheimer's and antiproliferative agents. European Journal of Medicinal Chemistry, 2017, 138, 761-773.	5.5	57
11	Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance. Drug Resistance Updates, 2021, 58, 100778.	14.4	45
12	New selenosteroids as antiproliferative agents. Organic and Biomolecular Chemistry, 2017, 15, 5041-5054.	2.8	42
13	Synthesis and antioxidant activity of O-alkyl selenocarbamates, selenoureas and selenohydantoins. European Journal of Pharmaceutical Sciences, 2013, 48, 582-592.	4.0	36
14	A green procedure for the regio- and chemoselective hydrophosphonylation of unsaturated systems using CaO under solventless conditions. Green Chemistry, 2010, 12, 1171.	9.0	33
15	N-1,2,3-triazole-isatin derivatives for cholinesterase and β-amyloid aggregation inhibition: A comprehensive bioassay study. Bioorganic Chemistry, 2020, 98, 103753.	4.1	32
16	Simple and efficient synthesis of O-unprotected glycosyl thiourea and isourea derivatives from glycosylamines. Tetrahedron, 2004, 60, 61-72.	1.9	30
17	Complexation of hydroxytyrosol with β-cyclodextrins. An efficient photoprotection. Tetrahedron, 2010, 66, 8006-8011.	1.9	27
18	Eco-friendly preparation of 5-hydroxymethylfurfural from sucrose using ion-exchange resins. Chemical Engineering Science, 2014, 109, 244-250.	3.8	27

#	Article	IF	CITATIONS
19	Selenoureido-iminosugars: A new family of multitarget drugs. European Journal of Medicinal Chemistry, 2016, 123, 155-160.	5.5	27
20	Phenolic thio- and selenosemicarbazones as multi-target drugs. European Journal of Medicinal Chemistry, 2015, 94, 63-72.	5.5	26
21	New synthetic approaches to sugar ureas. Access to ureido-β-cyclodextrins. Tetrahedron, 2005, 61, 9058-9069.	1.9	22
22	New cup-shaped Î \pm -cyclodextrin derivatives and a study of their catalytic properties in oxidation reactions. Tetrahedron, 2007, 63, 8872-8880.	1.9	22
23	Selenocoumarins as new multitarget antiproliferative agents: Synthesis, biological evaluation and in silico calculations. European Journal of Medicinal Chemistry, 2019, 179, 493-501.	5.5	22
24	Tacrine-O-protected phenolics heterodimers as multitarget-directed ligands against Alzheimer's disease: Selective subnanomolar BuChE inhibitors. European Journal of Medicinal Chemistry, 2019, 181, 111550.	5.5	21
25	Stereoselective synthesis of imidazolidine, imidazoline and imidazole C- and N-pseudonucleosides. Tetrahedron: Asymmetry, 1999, 10, 3011-3023.	1.8	20
26	A practical one-pot synthesis of O-unprotected glycosyl thioureas. Tetrahedron Letters, 2001, 42, 5413-5416.	1.4	20
27	Selenoureas for anion binding as molecular logic gates. Chemical Communications, 2017, 53, 11869-11872.	4.1	20
28	A facile access to ureido sugars. Synthesis of urea-bridged β-cyclodextrins. Tetrahedron Letters, 2003, 44, 8539-8543.	1.4	19
29	Synthesis of unprecedented steroidal spiro heterocycles as potential antiproliferative drugs. European Journal of Medicinal Chemistry, 2018, 143, 21-32.	5.5	19
30	Glycosidase inhibitors: versatile tools in glycobiology. Carbohydrate Chemistry, 2012, , 215-262.	0.3	18
31	l-Isofucoselenofagomine and derivatives: dual activities as antioxidants and as glycosidase inhibitors. Tetrahedron, 2012, 68, 3591-3595.	1.9	18
32	Glucosylpolyphenols as Inhibitors of Aβ-Induced Fyn Kinase Activation and Tau Phosphorylation: Synthesis, Membrane Permeability, and Exploratory Target Assessment within the Scope of Type 2 Diabetes and Alzheimer's Disease. Journal of Medicinal Chemistry, 2020, 63, 11663-11690.	6.4	17
33	Carbohydrates: Potential Sweet Tools Against Cancer. Current Medicinal Chemistry, 2020, 27, 1206-1242.	2.4	17
34	Glycosidase Inhibitors: Structure, Activity, Synthesis, and Medical Relevance. , 2007, , 815-884.		16
35	Expeditious synthesis of cyclic isourea derivatives of β-d-glucopyranosylamine. Tetrahedron Letters, 2002, 43, 4313-4316.	1.4	15
36	An Isofagomine Analogue with an Amidine at the Pseudoanomeric Position. Organic Letters, 2011, 13, 2908-2911.	4.6	15

#	Article	IF	CITATIONS
37	Enzyme inhibition by iminosugars: Analysis and insight into the glycosidase–iminosugar dependency of pH. Bioorganic and Medicinal Chemistry, 2013, 21, 4755-4761.	3.0	15
38	Anomer-Selective Glycosidase Inhibition by 2-N-Alkylated 1-Azafagomines. ChemBioChem, 2007, 8, 657-661.	2.6	14
39	Spiranic d-gluco-configured N-substituted thiohydantoins as potential enzymatic inhibitors. Tetrahedron, 2010, 66, 9964-9973.	1.9	14
40	Aziridines as a structural motif to conformational restriction of azasugars. Organic and Biomolecular Chemistry, 2003, 1, 478-482.	2.8	13
41	Synthesis of conformationally-constrained thio(seleno)hydantoins and α-triazolyl lactones from d-arabinose as potential glycosidase inhibitors. Tetrahedron, 2012, 68, 4888-4898.	1.9	13
42	Ugi Reaction Synthesis of Oxindole–Lactam Hybrids as Selective Butyrylcholinesterase Inhibitors. ACS Medicinal Chemistry Letters, 2021, 12, 1718-1725.	2.8	13
43	Effective synthesis of negatively charged cyclodextrins. Selective access to phosphate cyclodextrins. Tetrahedron, 2008, 64, 7587-7593.	1.9	12
44	Unprecedented spiro-annelated sugar isoureas, guanidines and amidines as new families of glycosidase inhibitors. RSC Advances, 2012, 2, 11326.	3.6	12
45	Synthesis of furan 4′-thio-C-nucleosides, their methylsulfonium and sulfoxide derivatives. Evaluation as glycosidase inhibitors. Tetrahedron, 2003, 59, 2801-2809.	1.9	11
46	Synthesis of the First Seleniumâ€Containing Acyclic Nucleosides and Anomeric Spironucleosides from Carbohydrate Precursors. European Journal of Organic Chemistry, 2009, 2009, 5239-5246.	2.4	11
47	Design and Synthesis of CNS-targeted Flavones and Analogues with Neuroprotective Potential Against H2O2- and Al²1-42-Induced Toxicity in SH-SY5Y Human Neuroblastoma Cells. Pharmaceuticals, 2019, 12, 98.	3.8	11
48	In silico, NMR and pharmacological evaluation of an hydroxyoxindole cholinesterase inhibitor. Bioorganic and Medicinal Chemistry, 2019, 27, 354-363.	3.0	11
49	2-Aminobenzoxazole-appended coumarins as potent and selective inhibitors of tumour-associated carbonic anhydrases. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 168-177.	5.2	11
50	Synthesis and antiproliferative activity of sulfa-Michael adducts and thiochromenes derived from carbohydrates. New Journal of Chemistry, 2017, 41, 3154-3162.	2.8	9
51	Chalcogen-containing phenolics as antiproliferative agents. Future Medicinal Chemistry, 2018, 10, 319-334.	2.3	9
52	Masked Phenolic-Selenium Conjugates: Potent and Selective Antiproliferative Agents Overcoming P-gp Resistance. Pharmaceuticals, 2020, 13, 358.	3.8	9
53	Squaramide-Tethered Sulfonamides and Coumarins: Synthesis, Inhibition of Tumor-Associated CAs IX and XII and Docking Simulations. International Journal of Molecular Sciences, 2022, 23, 7685.	4.1	9
54	Active Site Protonation of 1-Azafagomine in Glucosidases Studied by Solid-State NMR Spectroscopy. European Journal of Organic Chemistry, 2007, 2007, 1735-1742.	2.4	8

#	Article	IF	CITATIONS
55	cis-Fused bicyclic sugar thiocarbamates. Reactivity towards amines. Tetrahedron, 2008, 64, 11789-11796.	1.9	8
56	Tuning the activity of iminosugars: novel <i>N</i> -alkylated deoxynojirimycin derivatives as strong BuChE inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 138-146.	5.2	8
57	Tacrine-sugar mimetic conjugates as enhanced cholinesterase inhibitors. Organic and Biomolecular Chemistry, 2021, 19, 2322-2337.	2.8	8
58	Iridium- and Palladium-Based Catalysts in the Pharmaceutical Industry. Catalysts, 2022, 12, 164.	3.5	8
59	Taurine isothiocyanate: a versatile intermediate for the preparation of ureas, thioureas, and guanidines. Taurine-derived cyclodextrins. Tetrahedron Letters, 2008, 49, 3912-3915.	1.4	7
60	Design of chalcogen-containing norepinephrines: efficient GPx mimics and strong cytotoxic agents against HeLa cells. Future Medicinal Chemistry, 2016, 8, 2185-2195.	2.3	7
61	1,4-Dideoxy-1,4-imino-d-arabinitol (DAB) Analogues Possessing a Hydrazide Imide Moiety as Potent and Selective α-Mannosidase Inhibitors. ACS Omega, 2020, 5, 18507-18514.	3.5	7
62	Thio- and selenosemicarbazones as antiprotozoal agents against <i>Trypanosoma cruzi</i> and <i>Trichomonas vaginalis</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 781-791.	5.2	7
63	A gliclazide complex based on palladium towards Alzheimer's disease: promising protective activity against Al²-induced toxicity in <i>C. elegans</i> . Chemical Communications, 2022, 58, 1514-1517.	4.1	6
64	Synthesis of Heterocycles from Glycosylamines and Glycosyl Azides. Topics in Heterocyclic Chemistry, 2007, , 31-66.	0.2	5
65	Sugar hydrazide imides: a new family of glycosidase inhibitors. Organic and Biomolecular Chemistry, 2017, 15, 8709-8712.	2.8	5
66	Bicyclic 1-Azafagomine Derivatives: Synthesis and Glycosidase Inhibitory Testing. Synthesis, 2019, 51, 4066-4077.	2.3	5
67	Evaluation of chromane derivatives: Promising privileged scaffolds for lead discovery within Alzheimer's disease. Bioorganic and Medicinal Chemistry, 2022, 68, 116807.	3.0	5
68	Carbohydrate-derived bicyclic selenazolines as new dual inhibitors (cholinesterases/OGA) against Alzheimer's disease. Bioorganic Chemistry, 2022, 127, 105983.	4.1	5
69	Heterocycles from Carbohydrate Isothiocyanates. Topics in Heterocyclic Chemistry, 2006, , 67-100.	0.2	4
70	Alkoxyamine-cyanoborane adducts: efficient cyanoborane transfer agents. Chemical Communications, 2011, 47, 5617-5619.	4.1	4
71	Intramolecular cyclization of alkoxyaminosugars: access to novel glycosidase inhibitor families. Organic and Biomolecular Chemistry, 2012, 10, 4220.	2.8	4
72	A uronic acid analogue of isofagomine lactam as a nanomolar glucuronidase inhibitor. Tetrahedron Letters, 2012, 53, 2045-2047.	1.4	4

#	Article	IF	CITATIONS
73	A Straightforward Access to New Families of Lipophilic Polyphenols by Using Lipolytic Bacteria. PLoS ONE, 2016, 11, e0166561.	2.5	4
74	Straightforward access to novel mitochondriotropics derived from 2-arylethanol as potent and selective antiproliferative agents. European Journal of Medicinal Chemistry, 2022, 228, 113980.	5.5	4
75	Survey of New, Small-Molecule Isatin-Based Oxindole Hybrids as Multi-Targeted Drugs for the Treatment of Alzheimer's Disease. Synthesis, 0, , .	2.3	4
76	Novel 1,2,3-triazole <i>epicinchonas</i> : Transitioning from organocatalysis to biological activities. Synthetic Communications, 2021, 51, 2954-2974.	2.1	3
77	Development of tacrine clusters as positively cooperative systems for the inhibition of acetylcholinesterase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 1658-1663.	5.2	3
78	Titanium Tetraisopropoxide. Synlett, 2003, 2003, 2261-2262.	1.8	2
79	Synthesis and characterization of mercury(II)–sugar thioureas complexes. Polyhedron, 2009, 28, 4039-4043.	2.2	2
80	Difluoromethylenated polyhydroxylated pyrrolidines: facile synthesis, crystal structure and biological evaluation. Future Medicinal Chemistry, 2009, 1, 991-997.	2.3	2
81	Functionalized d- and l-Arabino-Pyrrolidines as Potent and Selective Clycosidase Inhibitors. Synthesis, 2022, 54, 2916-2926.	2.3	2
82	CHAPTER 3. Synthesis of Organoselenium Derivatives of Biological Relevance. Food and Nutritional Components in Focus, 2015, , 40-64.	0.1	1
83	Chemoselective Preparation of New Families of Phenolic-Organoselenium Hybrids—A Biological Assessment. Molecules, 2022, 27, 1315.	3.8	1
84	Synthesis of O-Unprotected Sugar Isothiocyanates and Their Transformation into Thioureas and Cyclic Isoureas. ChemInform, 2005, 36, no.	0.0	0
85	Synthesis of fluorescent O-Coumarin glycosides as Potential drug delivery systems for MAO inhibitors . , 0, , .		0