Philipp J Keller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8568102/publications.pdf

Version: 2024-02-01

76196 114278 9,588 67 40 63 citations h-index g-index papers 76 76 76 10468 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy. Science, 2008, 322, 1065-1069.	6.0	1,397
2	Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nature Methods, 2013, 10, 413-420.	9.0	1,194
3	Fast, high-contrast imaging of animal development with scanned light sheet–based structured-illumination microscopy. Nature Methods, 2010, 7, 637-642.	9.0	515
4	A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nature Methods, 2017, 14, 987-994.	9.0	502
5	Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nature Methods, 2012, 9, 755-763.	9.0	487
6	Tissue clearing and its applications inÂneuroscience. Nature Reviews Neuroscience, 2020, 21, 61-79.	4.9	350
7	In Toto Imaging and Reconstruction of Post-Implantation Mouse Development at the Single-Cell Level. Cell, 2018, 175, 859-876.e33.	13.5	348
8	Light-sheet functional imaging in fictively behaving zebrafish. Nature Methods, 2014, 11, 883-884.	9.0	294
9	Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nature Methods, 2014, 11, 951-958.	9.0	253
10	Tandem fluorescent protein timers for in vivo analysis of protein dynamics. Nature Biotechnology, 2012, 30, 708-714.	9.4	239
11	Visualizing Whole-Brain Activity and Development at the Single-Cell Level Using Light-Sheet Microscopy. Neuron, 2015, 85, 462-483.	3.8	215
12	BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples. Nature Methods, 2019, 16, 870-874.	9.0	214
13	Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms. Nature Biotechnology, 2016, 34, 1267-1278.	9.4	211
14	Whole-animal functional and developmental imaging with isotropic spatial resolution. Nature Methods, 2015, 12, 1171-1178.	9.0	203
15	Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6274-83.	3.3	195
16	Whole-central nervous system functional imaging in larval Drosophila. Nature Communications, 2015, 6, 7924.	5.8	179
17	Imaging Morphogenesis: Technological Advances and Biological Insights. Science, 2013, 340, 1234168.	6.0	168
18	Light sheet microscopy of living or cleared specimens. Current Opinion in Neurobiology, 2012, 22, 138-143.	2.0	160

#	Article	IF	CITATIONS
19	Quantitative in vivo imaging of entire embryos with Digital Scanned Laser Light Sheet Fluorescence Microscopy. Current Opinion in Neurobiology, 2008, 18, 624-632.	2.0	159
20	Real-Time Three-Dimensional Cell Segmentation in Large-Scale Microscopy Data of Developing Embryos. Developmental Cell, 2016, 36, 225-240.	3.1	156
21	Whole-Brain Profiling of Cells and Circuits in Mammals by Tissue Clearing and Light-Sheet Microscopy. Neuron, 2020, 106, 369-387.	3.8	145
22	Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb. ELife, 2018, 7, .	2.8	134
23	Efficient processing and analysis of large-scale light-sheet microscopy data. Nature Protocols, 2015, 10, 1679-1696.	5.5	109
24	Life sciences require the third dimension. Current Opinion in Cell Biology, 2006, 18, 117-124.	2.6	99
25	Light-Sheet Microscopy and Its Potential for Understanding Developmental Processes. Annual Review of Cell and Developmental Biology, 2019, 35, 655-681.	4.0	98
26	Development of the annelid axochord: Insights into notochord evolution. Science, 2014, 345, 1365-1368.	6.0	90
27	Characterization of a common progenitor pool of the epicardium and myocardium. Science, 2021, 371, .	6.0	88
28	Histone H3K27 acetylation precedes active transcription during zebrafish zygotic genome activation as revealed by live-cell analysis. Development (Cambridge), 2019, 146, .	1.2	81
29	Spore number control and breeding in Saccharomyces cerevisiae. Journal of Cell Biology, 2005, 171, 627-640.	2.3	73
30	Single-Cell Reconstruction of Emerging Population Activity in an Entire Developing Circuit. Cell, 2019, 179, 355-372.e23.	13.5	72
31	Reconstructing embryonic development. Genesis, 2011, 49, 488-513.	0.8	70
32	Live Imaging of Whole Mouse Embryos during Gastrulation: Migration Analyses of Epiblast and Mesodermal Cells. PLoS ONE, 2013, 8, e64506.	1.1	66
33	Shedding light on the system: studying embryonic development with light sheet microscopy. Current Opinion in Genetics and Development, 2011, 21, 558-565.	1.5	65
34	Light-sheet imaging for systems neuroscience. Nature Methods, 2015, 12, 27-29.	9.0	62
35	Brain-wide circuit interrogation at the cellular level guided by online analysis of neuronal function. Nature Methods, 2018, 15, 1117-1125.	9.0	54
36	Digital Scanned Laser Light-Sheet Fluorescence Microscopy (DSLM) of Zebrafish and <i>Drosophila</i> Embryonic Development. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot065839.	0.2	48

#	Article	IF	Citations
37	Live imaging and quantitative analysis of gastrulation in mouse embryos using light-sheet microscopy and 3D tracking tools. Nature Protocols, 2014, 9, 575-585.	5 . 5	48
38	Fast and robust optical flow for time-lapse microscopy using super-voxels. Bioinformatics, 2013, 29, 373-380.	1.8	47
39	Nlcam modulates midline convergence during anterior neural plate morphogenesis. Developmental Biology, 2010, 339, 14-25.	0.9	46
40	Segregation of yeast nuclear pores. Nature, 2010, 466, E1-E1.	13.7	45
41	Direct InÂVivo Manipulation and Imaging of Calcium Transients in Neutrophils Identify a Critical Role for Leading-Edge Calcium Flux. Cell Reports, 2015, 13, 2107-2117.	2.9	45
42	Emerging Imaging and Genomic Tools for Developmental Systems Biology. Developmental Cell, 2016, 36, 597-610.	3.1	45
43	Digital Scanned Laser Light Sheet Fluorescence Microscopy. Cold Spring Harbor Protocols, 2010, 2010, pdb.top78.	0.2	40
44	Three-dimensional preparation and imaging reveal intrinsic microtubule properties. Nature Methods, 2007, 4, 843-846.	9.0	39
45	In vivo imaging of zebrafish embryogenesis. Methods, 2013, 62, 268-278.	1.9	38
46	Repulsive cues combined with physical barriers and cell–cell adhesion determine progenitor cell positioning during organogenesis. Nature Communications, 2016, 7, 11288.	5.8	38
47	Metabolic Regulation of Developmental Cell Cycles and Zygotic Transcription. Current Biology, 2019, 29, 1193-1198.e5.	1.8	35
48	A practical guide to adaptive light-sheet microscopy. Nature Protocols, 2018, 13, 2462-2500.	5 . 5	34
49	Towards comprehensive cell lineage reconstructions in complex organisms using lightâ€sheet microscopy. Development Growth and Differentiation, 2013, 55, 563-578.	0.6	30
50	Nud1p, the yeast homolog of Centriolin, regulates spindle pole body inheritance in meiosis. EMBO Journal, 2006, 25, 3856-3868.	3.5	28
51	Evolution of Mutational Robustness in the Yeast Genome: A Link to Essential Genes and Meiotic Recombination Hotspots. PLoS Genetics, 2009, 5, e1000533.	1.5	27
52	Three-Dimensional Microtubule Behavior in Xenopus Egg Extracts Reveals Four Dynamic States and State-Dependent Elastic Properties. Biophysical Journal, 2008, 95, 1474-1486.	0.2	26
53	A computational statistics approach for estimating the spatial range of morphogen gradients. Development (Cambridge), 2011, 138, 4867-4874.	1.2	24
54	InÂvivo glucose imaging in multiple model organisms with an engineered single-wavelength sensor. Cell Reports, 2021, 35, 109284.	2.9	24

#	Article	IF	CITATIONS
55	Light Sheet Microscopy in Cell Biology. Methods in Molecular Biology, 2012, 931, 123-137.	0.4	23
56	The PAR complex controls the spatiotemporal dynamics of F-actin and the MTOC in directionally migrating leukocytes. Journal of Cell Science, 2014, 127, 4381-95.	1.2	19
57	Nuclear crowding and nonlinear diffusion during interkinetic nuclear migration in the zebrafish retina. ELife, 2020, 9, .	2.8	15
58	A Preferred Curvature-Based Continuum Mechanics Framework for Modeling Embryogenesis. Biophysical Journal, 2018, 114, 267-277.	0.2	13
59	Live imaging of nervous system development and function using lightâ€sheet microscopy. Molecular Reproduction and Development, 2015, 82, 605-618.	1.0	11
60	Light Sheet-Based Imaging and Analysis of Early Embryogenesis in the Fruit Fly. Methods in Molecular Biology, 2015, 1189, 79-97.	0.4	7
61	Making biology transparent. Nature Biotechnology, 2014, 32, 1104-1105.	9.4	5
62	3D Haar-like elliptical features for object classification in microscopy. , 2013, , .		3
63	Imaging far and wide. ELife, 2016, 5, .	2.8	3
64	The zebrafish digital embryo: in toto reconstruction of zebrafish early embryonic development with digital scanned laser light sheet fluorescence microscopy., 2009,,.		1
65	Reconstructing Nervous System Development and Function with Light-Sheet Microscopy. , 2015, , .		0
66	Whole-animal imaging with high spatio-temporal resolution. Proceedings of SPIE, 2016, , .	0.8	0
67	How to Make a Worm Twitch. Biophysical Journal, 2017, 112, 1737-1738.	0.2	O