Tetsuo Hanaguri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8567843/publications.pdf

Version: 2024-02-01

134 papers 5,589 citations

36 h-index 76900 74 g-index

137 all docs

137 docs citations

137 times ranked

4247 citing authors

#	Article	IF	Citations
1	Superconductivity near the saddle point in the two-dimensional Rashba system $Si(111)\hat{a}^3\tilde{A}-3\hat{a}'(Tl,Pb)$. Physical Review B, 2022, 105, .	3.2	1
2	Doublonlike Excitations and Their Phononic Coupling in a Mott Charge-Density-Wave System. Physical Review X, 2021, 11 , .	8.9	11
3	Quasiparticle Nodal Plane in the Fulde-Ferrell-Larkin-Ovchinnikov State of FeSe. Physical Review Letters, 2021, 127, 257001.	7.8	11
4	Exotic Superconducting States in FeSe-based Materials. Journal of the Physical Society of Japan, 2020, 89, 102002.	1.6	87
5	Imaging the coupling between itinerant electrons and localised moments in the centrosymmetric skyrmion magnet GdRu2Si2. Nature Communications, 2020, 11, 5925.	12.8	75
6	Mottness versus unit-cell doubling as the driver of the insulating state in 1T-TaS2. Nature Communications, 2020, 11, 2477.	12.8	100
7	Scalable Majorana vortex modes in iron-based superconductors. Science Advances, 2020, 6, eaay0443.	10.3	61
8	Microscopic characterization of the superconducting gap function in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">Sn</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>â^²</mml:mo><mml:mi>x</mml:mi>Te</mml:mrow></mml:msub></mml:math> .	mn 3l2 mi><	/m unl: mrow><
9	Physical Review B, 2020, 101, . Zero-energy vortex bound state in the superconducting topological surface state of Fe(Se,Te). Nature Materials, 2019, 18, 811-815.	27.5	214
10	Quantum Vortex Core and Missing Pseudogap in the Multiband BCS-BEC Crossover Superconductor FeSe. Physical Review Letters, 2019, 122, 077001.	7.8	56
11	A scanning tunneling microscope for spectroscopic imaging below 90 mK in magnetic fields up to 17.5 T. Review of Scientific Instruments, 2018, 89, 093707.	1.3	37
12	Ultrathin Bismuth Film on High-Temperature Cuprate Superconductor Bi2Sr2CaCu2O8+δas a Candidate of a Topological Superconductor. ACS Nano, 2018, 12, 10977-10983.	14.6	15
13	Two distinct superconducting pairing states divided by the nematic end point in FeSe _{1â^' <i>x</i>} S _{<i>x</i>} . Science Advances, 2018, 4, eaar6419.	10.3	74
14	Spin-orbit scattering visualized in quasiparticle interference. Physical Review B, 2017, 95, .	3.2	27
15	Full-gap superconductivity in spin-polarised surface states of topological semimetal \hat{l}^2 -PdBi2. Nature Communications, 2017, 8, 976.	12.8	42
16	Orbital-dependent quasiparticle scattering interference in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>3</mml:mn><mml:mi>R<td>i> 3∩2ml:m</td><td>no<i>></i>fâ^³</td></mml:mi></mml:mrow></mml:math>	i> 3∩2 ml:m	no <i>></i> fâ^³
17	Analyzing Electronic States by Spectroscopic-Imaging STM. Hyomen Kagaku, 2017, 38, 502-507.	0.0	O
18	Observation of Zeeman effect in topological surface state with distinct material dependence. Nature Communications, 2016, 7, 10829.	12.8	26

#	Article	IF	CITATIONS
19	Bipartite electronic superstructures in the vortex core of Bi2Sr2CaCu2O8+ \hat{l} . Nature Communications, 2016, 7, 11747.	12.8	32
20	Imaging ambipolar two-dimensional carriers induced by the spontaneous electric polarization of a polar semiconductor BiTel. Physical Review B, 2015, 91, .	3.2	16
21	Evidence for Time-Reversal Symmetry Breaking of the Superconducting State near Twin-Boundary Interfaces in FeSe Revealed by Scanning Tunneling Spectroscopy. Physical Review X, 2015, 5, .	8.9	61
22	Field-induced superconducting phase of FeSe in the BCS-BEC cross-over. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16309-16313.	7.1	312
23	Imaging the two-component nature of Dirac–Landau levels in the topological surface state of Bi2Se3. Nature Physics, 2014, 10, 815-819.	16.7	39
24	Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity. Scientific Reports, 2014, 4, 4109.	3.3	85
25	Memory Effect in a Topological Surface State of Bi ₂ Te ₂ Se. ACS Nano, 2013, 7, 4105-4110.	14.6	7
26	Scanning tunneling microscopy/spectroscopy of vortices in LiFeAs. Physical Review B, 2012, 85, .	3.2	111
27	display="inline"> <mml:mi>cos</mml:mi> <mml:mo>i»;</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>4</mml:mn> <mml:mi>i†</mml:mi> <mml:mi> Tj ETQq1 1 0.784314 rgBT Doped<mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>19.yerlock</td><td>10 Tf 50 42</td></mml:math></mml:mi>	19.yerlock	10 Tf 50 42
28	display="inline" x mml:msub x mml:mix FeTex/mml:mix x mml:mnx0.6x/mml:mnxx/mml:msub x mml:msub x mm	mi>Se <td>nml:mi><mn 105</mn </td>	nml:mi> <mn 105</mn
29	Unconventional <i>s</i> -Wave Superconductivity in Fe(Se,Te). Science, 2010, 328, 474-476.	12.6	463
30	Momentum-resolved Landau-level spectroscopy of Dirac surface state in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Bi</mml:mtext></mml:mrow><mml:mn>2< Physical Review B, 2010, 82, .</mml:mn></mml:msub></mml:mrow></mml:math>	/ 3 12/1:mn>	243 √ mml:msu
31	Coherence Factors in a High- <i>T</i> _c Cuprate Probed by Quasi-Particle Scattering Off Vortices. Science, 2009, 323, 923-926.	12.6	113
32	Dual realities in superconductors. Nature, 2008, 454, 1062-1063.	27.8	4
33	Local Tunneling Spectroscopy across a Metamagnetic Critical Point in the Bilayer Ruthenate <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Sr</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>Imathvariant="normal">O</mml:mi><mml:mn>7</mml:mn></mml:msub></mml:math> . Physical Review	R¤.ε/ mml:n	n84k mml:m
34	Letters, 2007, 99, 057208. An Intrinsic Bond-Centered Electronic Glass with Unidirectional Domains in Underdoped Cuprates. Science, 2007, 315, 1380-1385.	12.6	560
35	Low-energy spectroscopic mapping studies in optimally-doped Ca2â^'xNaxCuO2Cl2. Physica C: Superconductivity and Its Applications, 2007, 460-462, 954-955.	1.2	2
36	Charge-order-maximized momentum-dependent superconductivity. Nature Physics, 2007, 3, 720-725.	16.7	181

#	Article	IF	Citations
37	Quasiparticle interference and superconducting gap in Ca2â^'xNaxCuO2Cl2. Nature Physics, 2007, 3, 865-871.	16.7	155
38	Development of high-field STM and its application to the study on magnetically-tuned criticality in Sr3Ru2O7. Journal of Physics: Conference Series, 2006, 51, 514-521.	0.4	31
39	Anisotropic s-wave superconductors studied by angle-resolved photoemission spectroscopy. Journal of Physics and Chemistry of Solids, 2006, 67, 277-281.	4.0	12
40	Electronic States of Surfaces of Strongly Correlated Electron Systems. Hyomen Kagaku, 2006, 27, 226-231.	0.0	0
41	Multiple superconducting phases in heavy fermion superconductors. Journal of Physics and Chemistry of Solids, 2005, 66, 1365-1369.	4.0	2
42	New high field state of flux line lattice in CeCoIn5. Physica C: Superconductivity and Its Applications, 2005, 426-431, 36-40.	1.2	0
43	Anisotropy of the Superconducting Gap of the Borocarbide SuperconductorYNi2B2Cwith Ultrasonic Attenuation. Physical Review Letters, 2004, 92, 147002.	7.8	38
44	Evolution of local electronic states from a metal to a correlated insulator in aNiS2â^'xSexsolid solution. Physical Review B, 2004, 70, .	3.2	17
45	High-field state of the flux-line lattice in the unconventional superconductorCeCoIn5. Physical Review B, 2004, 70, .	3.2	114
46	Imaging Nanoscale Electronic Inhomogeneity in the Lightly Doped Mott InsulatorCa2â^'xNaxCuO2Cl2. Physical Review Letters, 2004, 93, 097004.	7.8	74
47	A â€~checkerboard' electronic crystal state in lightly hole-doped Ca2-xNaxCuO2Cl2. Nature, 2004, 430, 1001-1005.	27.8	620
48	STM/STS study of metal-to-Mott-insulator transitions. Physica C: Superconductivity and Its Applications, 2004, 408-410, 328-329.	1.2	3
49	Real Space Imaging of the Electronic States in Underdoped Ca2â^'x Na x CuO2Cl2 Single Crystals. Journal of Low Temperature Physics, 2003, 131, 299-303.	1.4	4
50	Anomaly of quasi-particle density of states in the vortex state of NbSe2. Physica B: Condensed Matter, 2003, 329-333, 1355-1356.	2.7	13
51	Electronic state of NbSe2 investigated by STM/STS. Physica B: Condensed Matter, 2003, 329-333, 1598-1599.	2.7	25
52	STM/STS study on Ca2â^'xNaxCuO2Cl2 single crystals. Physica C: Superconductivity and Its Applications, 2003, 388-389, 283-284.	1.2	7
53	Millimeter wave and microwave electrodynamic spectroscopy of YBa2(Cu1â^'xZnx)3Oy in the Meissner and mixed state. Physica C: Superconductivity and Its Applications, 2003, 388-389, 417-418.	1.2	2
54	Inhomogeneous electronic structures in heavily Pb-doped Bi2Sr2CaCu2Oy single crystals probed by low temperature STM/STS. Physica C: Superconductivity and Its Applications, 2003, 388-389, 273-274.	1.2	4

#	Article	IF	CITATIONS
55	Specific heat study of magnetic superconductor ErNi2B2C single crystal under magnetic fields. Physica C: Superconductivity and Its Applications, 2003, 388-389, 179-180.	1.2	2
56	Observations of electronic inhomogeneity in heavily Pb-dopedBi2Sr2CaCu2Oysingle crystals by scanning tunneling microscopy. Physical Review B, 2003, 67, .	3.2	48
57	An instrument for low- and variable-temperature millimeter-wave surface impedance measurements under magnetic fields. Review of Scientific Instruments, 2003, 74, 4436-4441.	1.3	8
58	Electronic structures of two-phase microstructures \hat{l}_{\pm} and \hat{l}_{\pm} in heavily Pb-doped Bi2Sr2CaCu2Oy single crystals investigated by scanning tunneling microscopy/spectroscopy. Applied Physics Letters, 2003, 83, 1178-1180.	3.3	9
59	Angle-Resolved Photoemission Spectroscopy of (Ca,Na)2CuO2Cl2Crystals: Fingerprints of a Magnetic Insulator in a Heavily Underdoped Superconductor. Journal of the Physical Society of Japan, 2003, 72, 1018-1021.	1.6	20
60	Location-sensitive measurement of the local fluctuation of driven vortex density inBi2Sr2CaCu2Oy. Physical Review B, 2002, 65, .	3.2	25
61	Observation of Structures of Chain Vortices Inside Anisotropic High-TcSuperconductors. Physical Review Letters, 2002, 88, 237001.	7.8	68
62	Effects of superconducting gap anisotropy on the flux flow resistivity inY(Ni1â^'xPtx)2B2C. Physical Review B, 2002, 66, .	3.2	21
63	Direct Evidence of the Anisotropic Structure of Vortices Interacting with Columnar Defects in High-Temperature Superconductors through the Analysis of Lorentz Images. Journal of the Physical Society of Japan, 2002, 71, 1840-1843.	1.6	12
64	Growth of Na-Doped Ca2CuO2Cl2Single Crystals under High Pressures of Several GPa. Journal of the American Chemical Society, 2002, 124, 12275-12278.	13.7	58
65	Observation of Vortices and Columnar Defects by Using Lorentz Microscopy. Microscopy and Microanalysis, 2002, 8, 526-527.	0.4	0
66	Observation of Chain Structure of Superconducting Vortices by Lorentz Microscopy. Microscopy and Microanalysis, 2002, 8, 514-515.	0.4	0
67	Lorentz microscopy observation of vortices inside Bi-2212 thin films with columnar defects. Physica C: Superconductivity and Its Applications, 2002, 369, 68-76.	1.2	8
68	Effect of Zn doping on the electronic state of the vortex core in the mixed state of YBa2Cu3Oy. Physica C: Superconductivity and Its Applications, 2002, 378-381, 584-587.	1.2	1
69	Observation of Vortices and Columnar Defects by 1-MV Lorentz Microscopy I. Materials Research Society Symposia Proceedings, 2001, 689, 1.	0.1	0
70	Observation of Vortices and Columnar Defects by 1-MV Lorentz Microscopy II. Materials Research Society Symposia Proceedings, 2001, 689, 1.	0.1	0
71	Dynamics vs electronic states of vortex core of high-Tc superconductors investigated by high-frequency impedance measurement. Physica C: Superconductivity and Its Applications, 2001, 362, 127-133.	1.2	9
72	Estimation of vortex viscosity from the complex surface impedance measurement in the mixed state of YBa2Cu3Oy. Physica C: Superconductivity and Its Applications, 2001, 362, 273-276.	1.2	2

#	Article	IF	CITATIONS
73	Observation of individual vortices trapped along columnar defects in high-temperature superconductors. Nature, 2001, 412, 620-622.	27.8	117
74	Oscillating Rows of Vortices in Superconductors. Science, 2001, 294, 2136-2138.	12.6	73
75	Microwave and millimeter wave spectroscopy in the slightly hole-doped ladders of Sr 14 Cu 24 O 41. Europhysics Letters, 2001, 56, 434-440.	2.0	32
76	Electronic state of vortices in YBa2Cu3O yinvestigated by complex surface impedance measurements. Physical Review B, 2001, 63, .	3.2	73
77	Study of dynamical phase of Bi2Sr2CaCu2Oy by local noise measurement. Physica B: Condensed Matter, 2000, 284-288, 843-844.	2.7	2
78	STM/STS observations of Co impurities in Bi2.1Sr1.8Ca(Cu1â^'xCox)2O8+y single crystals. Physica B: Condensed Matter, 2000, 284-288, 1065-1066.	2.7	6
79	Metal–insulator transition in 1T-TaS2â^'xSex. Physica B: Condensed Matter, 2000, 284-288, 1673-1674.	2.7	4
80	A collective excitation on the slightly hole-doped ladders of Sr14â^'xCaxCu24O41 in the microwave and millimeter wave regions. Physica B: Condensed Matter, 2000, 284-288, 1936-1937.	2.7	3
81	Dynamics of vortices and quasiparticles in the mixed state of Bi2Sr2CaCu2Oy. Physica C: Superconductivity and Its Applications, 2000, 335, 148-152.	1.2	1
82	High-frequency electromagnetic response in the mixed state of YBa2Cu3Oy. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1189-1190.	1.2	0
83	Comparative study of thermal conductivity and surface impedance of Bi2Sr2CaCu2Oy in the mixed state. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1871-1872.	1.2	0
84	High Frequency Surface Impedance Measurement in the mixed state of Bi2Sr2CaCu2O y., 2000,, 371-373.		0
85	Field Dependence of Penetration Depth in an Electron-Doped Cuprate Superconductor Nd2-xCexCuO4withx=0.16. Journal of the Physical Society of Japan, 1999, 68, 594-598.	1.6	8
86	In-plane charge dynamics in La 1.6 \hat{a} ° x Nd 0.4 Sr x CuO 4 : Absence of a charge gap in the spin/charge ordered state. Europhysics Letters, 1999, 47, 715-721.	2.0	36
87	Interlayer phase correlation of the vortex system around the coupling transition inBi2Sr2CaCu2Oycontaining columnar defects. Physical Review B, 1999, 59, 11568-11574.	3.2	7
88	Reduction of the Superfluid Density in the Vortex-Liquid Phase ofBi2Sr2CaCu2Oy. Physical Review Letters, 1999, 82, 1273-1276.	7.8	24
89	Superconducting phenomenology of cuprates: effect of pseudo-gap and other anomalies. Physica C: Superconductivity and Its Applications, 1999, 317-318, 345-352.	1.2	0
90	Title is missing!. Journal of Low Temperature Physics, 1999, 117, 1241-1245.	1.4	16

#	Article	IF	CITATIONS
91	Effects of First-Order Vortex Phase Transition on the Electronic States of Bi2Sr2CaCu2O y. Journal of Low Temperature Physics, 1999, 117, 1405-1409.	1.4	2
92	Electronic Structures of Two-Phase Microstructures in Pb-doped Bi2Sr2CaCu2O y. Journal of Low Temperature Physics, 1999, 117, 341-345.	1.4	11
93	Site Sensitive Measurement of Local Fluctuation of Driven Vortex Density in Bi2Sr2CaCu2O y. Journal of Low Temperature Physics, 1999, 117, 1329-1333.	1.4	4
94	Ac Charge Dynamics in the Meissner State and the Vortex State of Bi2Sr2CaCu2O y., 1999, , 193-198.		1
95	c-axis microwave conductivity ofBi2Sr2CaCu2Oyin the superconducting state. Physical Review B, 1998, 57, 10946-10950.	3.2	25
96	Nonlinear Josephson plasma resonance inBi2Sr2CaCu2Oy. Physical Review B, 1998, 58, R8929-R8932.	3.2	4
97	Local Density Fluctuations of Moving Vortices in the Solid and Liquid Phases inBi2Sr2CaCu2Oy. Physical Review Letters, 1998, 80, 4550-4553.	7.8	56
98	Effects of Heavy-lon Irradiation on the Josephson Plasma Resonance in the Mixed State Of Bi2Sr2CaCu2Oy., 1998,, 103-106.		0
99	Nature of the vortex liquid inBi2Sr2CaCu2Oy. Physical Review B, 1997, 55, R8709-R8712.	3.2	24
100	Effects of Columnar Defects on the Josephson Plasma Resonance inBi2Sr2CaCu2Oy. Physical Review Letters, 1997, 78, 3177-3180.	7.8	40
101	Out-of-plane microwave conductivity of the cuprates in the superconducting state. Physica C: Superconductivity and Its Applications, 1997, 282-287, 1125-1126.	1.2	0
102	Phase correlation investigated by the Josephson plasma resonance in Bi2(Sr,La)2CuOy. Physica C: Superconductivity and Its Applications, 1997, 293, 143-148.	1.2	4
103	The static and dynamic properties of the vortices in Bi2Sr2CaCu2Oy. Physica C: Superconductivity and Its Applications, 1997, 282-287, 1303-1304.	1.2	0
104	Josephson plasma resonance in the mixed sate of Bi2Sr2CaCu2Oy containing columnar defects. Physica C: Superconductivity and Its Applications, 1997, 282-287, 2375-2376.	1.2	0
105	Josephson plasma resonance in the mixed state of heavy-ion irradiated Bi2Sr2CaCu2Oy. Physica C: Superconductivity and Its Applications, 1997, 293, 254-258.	1.2	0
106	Dielectric response of the sliding SDW in (TMTSF)2AsF6. Solid State Communications, 1997, 104, 505-509.	1.9	0
107	Phase transition in the mixed state of Bi2Sr2CaCu2Oy observed by local and macroscopic magnetometry. European Physical Journal D, 1996, 46, 1559-1560.	0.4	1
108	Josephson-plasma resonance of Bi-cuprates. European Physical Journal D, 1996, 46, 1635-1636.	0.4	4

#	Article	IF	CITATIONS
109	Nonlinear Meissner effect of the cuprate superconductors investigated by London penetration depth measurement. Physica C: Superconductivity and Its Applications, 1996, 263, 438-441.	1.2	2
110	Ultrasonic studies of anisotropic flux pinning in La1.85Sr0.15CuO4 under high magnetic fields. Physica B: Condensed Matter, 1996, 216, 274-276.	2.7	1
111	Crossover from the first-order vortex phase transition to the peak effect in Bi2Sr2CaCu2Oy having different oxygen contents. Physica C: Superconductivity and Its Applications, 1996, 256, 111-118.	1.2	45
112	Doping level dependence of magnetization anomalies and heat capacity of Bi2Sr2CaCu2O8 + \hat{l} in the mixed state. Physica C: Superconductivity and Its Applications, 1996, 263, 434-437.	1.2	1
113	Out-of-plane quasiparticle dynamics of the cuprate superconductors belowT c in microwave region. Journal of Low Temperature Physics, 1996, 105, 323-328.	1.4	4
114	Josephson plasma resonance in a single-layered cuprateBi2(Sr,La)2CuOy. Physical Review B, 1996, 53, R14749-R14752.	3.2	36
115	Nonlinear Meissner Effect in Double Layered High-TcCuprates Investigated by Measurement of the Penetration Depth. Journal of the Physical Society of Japan, 1996, 65, 3638-3645.	1.6	20
116	Magnetic-field dependence of the London penetration depth in type-II superconductor V3Si. Physica C: Superconductivity and Its Applications, 1995, 246, 223-227.	1.2	7
117	Magnetic Field Dependence of the London Penetration Depth ofBi2Sr2CaCu2Oy. Physical Review Letters, 1995, 74, 1202-1205.	7.8	62
118	Dynamical coherence volume of spin-density waves of (TMTSF)2PF6. Synthetic Metals, 1995, 70, 1291-1292.	3.9	0
119	Surface impedance of single crystals of high Tc cuprates as a function of magnetic field. Synthetic Metals, 1995, 71, 1587-1588.	3.9	0
120	Low-temperature structural phase transition and electronic anomalies inLa1.775R0.10Sr0.125CuO4(R=Nd,Sm,Gd,Tb). Physical Review B, 1994, 49, 12392-12395.	3.2	20
121	Surface impedance of single crystals of high-T/sub c/ cuprates as a function of magnetic field. , 1994, , .		0
122	Elastic anomalies in a La1.85Sr0.15CuO4 single crystal under high magnetic fields. Physica B: Condensed Matter, 1994, 194-196, 1579-1580.	2.7	8
123	Anisotropy of the flux pinning in La1.85Sr0.15CuO4 observed by ultrasound. Physica B: Condensed Matter, 1994, 194-196, 1837-1838.	2.7	0
124	Magnetic-field dependence of the London penetration depth of Bi2Sr2CaCu2Oy. Physica C: Superconductivity and Its Applications, 1994, 235-240, 1809-1810.	1.2	0
125	RF field penetration into a Bi2Sr2CaCu2O8 single crystal in the mixed state. Physica C: Superconductivity and Its Applications, 1994, 235-240, 1991-1992.	1.2	9
126	Elastic properties and anisotropic pinning of the flux-line lattice in single-crystallineLa1.85Sr0.15CuO4. Physical Review B, 1993, 48, 9772-9781.	3.2	25

#	Article	IF	CITATION
127	Ultrasonic Studies in La2-x(Ba,Sr)xCuO4. Springer Proceedings in Physics, 1992, , 217-220.	0.2	0
128	Ultrasonic studies in the La1.85Sr0.15CuO4 single crystal under the magnetic field. Physica C: Superconductivity and Its Applications, 1991, 185-189, 1395-1396.	1.2	9
129	Phase Transition belowTcin La2-xSrxCuO4(x=0.12)Observed by138La-NQR. Journal of the Physical Society of Japan, 1991, 60, 3581-3582.	1.6	12
130	Ultrasonic studies of structural phase transitions and superconductivity in La2â^'xBaxCuO4â^'Î^ and La2â^'xSrxCuO4â^'Î'. Physica B: Condensed Matter, 1990, 165-166, 1289-1290.	2.7	41
131	Anisotropy of upper critical field in the (110)t and (001)t planes for single-crystal La1.86Sr0.14CuO4. Physica B: Condensed Matter, 1990, 165-166, 1449-1450.	2.7	25
132	A Low-Temperature X-Ray Diffraction Study of Structural Phase Transition in La1.86Sr0.14CuO4. Japanese Journal of Applied Physics, 1990, 29, 2763-2767.	1.5	2
133	Magnetic Field Effect on the Superconducting Transition in (RE)xBa1-xCuOy. Japanese Journal of Applied Physics, 1987, 26, L2069-L2071.	1.5	6
134	Possibility of negative exchange interaction effect in RE-Ba-Cu oxides. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1987, 148, 446-448.	0.9	0