Leslie Greengard

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/8567782/publications.pdf
Version: 2024-02-01

1	A fast algorithm for particle simulations. Journal of Computational Physics, 1987, 73, 325-348.	3.8	3,849
2	A new version of the Fast Multipole Method for the Laplace equation in three dimensions. Acta Numerica, 1997, 6, 229-269.	10.7	692
3	Accelerating the Nonuniform Fast Fourier Transform. SIAM Review, 2004, 46, 443-454.	8.4	556
4	A Fast Adaptive Multipole Algorithm in Three Dimensions. Journal of Computational Physics, 1999, 155, 468-498.	3.8	535
5	Fast Direct Methods for Gaussian Processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38, 252-265.	13.9	397
6	The Fast Gauss Transform. SIAM Journal on Scientific and Statistical Computing, 1991, 12, 79-94.	1.5	355
7	Spectral Deferred Correction Methods for Ordinary Differential Equations. BIT Numerical Mathematics, 2000, 40, 241-266.	2.0	321
8	A wideband fast multipole method for the Helmholtz equation in three dimensions. Journal of Computational Physics, 2006, 216, 300-325.	3.8	242
9	Accelerating fast multipole methods for the Helmholtz equation at low frequencies. IEEE Computational Science and Engineering, 1998, 5, 32-38.	0.6	197

10 A Fast Algorithm for Particle Simulations. Journal of Computational Physics, 1997, 135, 280-292.
$2.3 \quad 166$

12 Plasmon-Assisted Chemical Vapor Deposition. Nano Letters, 2006, 6, 2592-2597.
9.1

153

13 The type 3 nonuniform FFT and its applications. Journal of Computational Physics, 2005, 206, 1-5.
3.8

149

14 A Fast Direct Solver for Structured Linear Systems by Recursive Skeletonization. SIAM Journal of Scientific Computing, 2012, 34, A2507-A2532.
2.8

148

Fast direct solvers for integral equations in complex three-dimensional domains. Acta Numerica, 2009,
18, 243-275.
10.7

144

Journal of Computational Physics, 2002, 180, 642-658.

A parallel version of the fast multipole method. Computers and Mathematics With Applications, 1990,23 A fast algorithm for the evaluation of heat potentials. Communications on Pure and AppliedMathematics, 1990, 43, 949-963.$3.1 \quad 91$A renormalization method for the evaluation of lattice sums. Journal of Mathematical Physics, 1994,35, 6036-6048.
25 On the numerical evaluation of elastostatic fields in locally isotropic two-dimensional composites.Journal of the Mechanics and Physics of Solids, 1998, 46, 1441-1462.$4.8 \quad 82$
A New Fast-Multipole Accelerated Poisson Solver in Two Dimensions. SIAM Journal of Scientific Computing, 2001, 23, 741-760.
27 The Numerical Solution of the $\langle\mathrm{i}\rangle \mathrm{N}</ \mathrm{i}\rangle-$ Body Problem. Computers in Physics, 1990, 4, 142-152.0.573
28 A fast multipole method for the three-dimensional Stokes equations. Journal of Computational Physics, 2008, 227, 1613-1619.

$3.8 \quad 73$ 3
29 A Direct Adaptive Poisson Solver of Arbitrary Order Accuracy. Journal of Computational Physics, 1996, 125, 415-424.
69
30 On the numerical solution of two-point boundary value problems. Communications on Pure and3.164Applied Mathematics, 1991, 44, 419-452.6
2.1 63xmlns:mm|="http:||www.w3.org/1998/Math/MathML" altimg="si5.gif"31 overflow="scroll">mml:mrowmml:msup<mml:mrowoverfiow= scrol| > mml:mrow mml:msup <mml:mrow
|> <mml:mrow > mml:mn7 </mml:mn> </mml:mrow > </mml:msup> </mml:mrow > </mml:math > Li MRIFast convolution with free-space Green's functions. Journal of Computational Physics, 2016, 323,3.863
191-203.
Spectral Approximation of the Free-Space Heat Kernel. Applied and Computational Harmonic Analysis, 2.2 62
33 2000, 9, 83-97.
On the numerical solution of the biharmonic equation in the plane. Physica D: Nonlinear Phenomena,
$1992,60,216-225$.

A new integral representation for quasi-periodic scattering problems in two dimensions. BIT Numerical Mathematics, 2011, 51, 67-90.

A Fast Adaptive Numerical Method for Stiff Two-Point Boundary Value Problems. SIAM Journal of
Scientific Computing, 1997, 18, 403-429.

Efficient representation of nonreflecting boundary conditions for the timeâ€dependent SchrÃๆdinger equation in two dimensions. Communications on Pure and Applied Mathematics, 2008, 61, 261-288.
3.1

49

A new integral representation for quasi-periodic fields and its application to two-dimensional band structure calculations. Journal of Computational Physics, 2010, 229, 6898-6914.
3.8

A Method of Images for the Evaluation of Electrostatic Fields in Systems of Closely Spaced
Conducting Cylinders. SIAM Journal on Applied Mathematics, 1998, 58, 122-141.
1.8

Fast multi-particle scattering: A hybrid solver for the Maxwell equations in microstructured
materials. Journal of Computational Physics, 2013, 232, 22-32.
3.8

42

Validation of neural spike sorting algorithms without ground-truth information. Journal of
Neuroscience Methods, 2016, 264, 65-77.

Fast and Accurate Evaluation of Nonlocal Coulomb and Dipole-Dipole Interactions via the
Nonuniform FFT. SIAM Journal of Scientific Computing, 2014, 36, B777-B794.

A free-space adaptive FMM-Based PDE solver in three dimensions. Communications in Applied
Mathematics and Computational Science, 2011, 6, 79-122.

> On the Numerical Evaluation of Electrostatic Fields in Dense Random Dispersions of Cylinders.
> Journal of Computational Physics, 1997, 136, 629-639.

Debye Sources and the Numerical Solution of the Time Harmonic Maxwell Equations II.
48 Communications on Pure and Applied Mathematics, 2013, 66, 753-789.
3.1

38

An Integral Equation Approach to the Incompressible Navier--Stokes Equations in Two Dimensions.
SIAM Journal of Scientific Computing, 1998, 20, 318-336.

A Fast Direct Solver for Elliptic Partial Differential Equations on Adaptively Refined Meshes. SIAM
Journal of Scientific Computing, 1999, 21, 1551-1566.

A mathematical tool for exploring the dynamics of biological networks. Proceedings of the National
Academy of Sciences of the United States of America, 2007, 104, 19169-19174.
7.1

A fast multipole method for the Rotneâ€"Pragerâ€"Yamakawa tensor and its applications. Journal of
Computational Physics, 2013, 234, 133-139.
3.8

34

On the numerical solution of the heat equation l: Fast solvers in free space. Journal of Computational
Physics, 2007, 226, 1891-1901.
3.8

33

On the Convergence of Local Expansions of Layer Potentials. SIAM Journal on Numerical Analysis, 2013,
51, 2660-2679.

55 Fast, accurate integral equation methods for the analysis of photonic crystal fibers I: Theory. Optics
Express, 2004, 12, 3791.

A Fast Direct Solver for High Frequency Scattering from a Large Cavity in Two Dimensions. SIAM Journal of Scientific Computing, 2014, 36, B887-B903.

Computational Software: Simple FMM Libraries for Electrostatics, Slow Viscous Flow, and
Frequency-Domain Wave Propagation. Communications in Computational Physics, 2015, 18, 516-528.

Rapid Solution of the Cryo-EM Reconstruction Problem by Frequency Marching. SIAM Journal on Imaging Sciences, 2017, 10, 1170-1195.

A fast, high-order solver for the Gradấ"Shafranov equation. Journal of Computational Physics, 2013,
243, 28-45.

Electrostatics and heat conduction in high contrast composite materials. Journal of Computational
Physics, 2006, 211, 64-76.

Overcoming Low-Frequency Breakdown of the Magnetic Field Integral Equation. IEEE Transactions on
Antennas and Propagation, 2013, 61, 1285-1290.

An integral equation formulation for rigid bodies in Stokes flow in three dimensions. Journal of Computational Physics, 2017, 332, 504-519.

The fast multipole method for gridless particle simulation. Computer Physics Communications, 1988,
48, 117-125.

An Integral Evolution Formula for the Wave Equation. Journal of Computational Physics, 2000, 162,
536-543.

Integral equation methods for Stokes flow in doubly-periodic domains. Journal of Engineering
Mathematics, 2004, 48, 157-170.

On the efficient representation of the half-space impedance Greenâ $\epsilon^{T M} s$ function for the Helmholtz equation. Wave Motion, 2014, 51, 1-13.

High Order Accurate Methods for the Evaluation of Layer Heat Potentials. SIAM Journal of Scientific Computing, 2009, 31, 3847-3860.

68 The Fast Generalized Gauss Transform. SIAM Journal of Scientific Computing, 2010, 32, 3092-3107.
2.8

24

69 Fast elliptic solvers in cylindrical coordinates and the Coulomb collision operator. Journal of Computational Physics, 2011, 230, 7840-7852.

High Resolution Inverse Scattering in Two Dimensions Using Recursive Linearization. SIAM Journal on Imaging Sciences, 2017, 10, 641-664.

Boundary integral equation analysis on the sphere. Numerische Mathematik, 2014, 128, 463-487.

Communications in Applied Mathematics and Computational Science, 2006, 1, 121-131.

73 Stable and accurate integral equation methods for scattering problems with multiple materia

Fast, Adaptive, High-Order Accurate Discretization of the Lippmann--Schwinger Equation in Two Dimensions. SIAM Journal of Scientific Computing, 2016, 38, A1770-A1787.

Integral Equation Methods for Elastance and Mobility Problems in Two Dimensions. SIAM Journal on
Numerical Analysis, 2016, 54, 2889-2909.

Integral Equation Methods for Unsteady Stokes Flow in Two Dimensions. SIAM Journal of Scientific
Computing, 2012, 34, A2197-A2219.

Efficient sum-of-exponentials approximations for the heat kernel and their applications. Advances in
Computational Mathematics, 2015, 41, 529-551.

On the stability of time-domain integral equations for acoustic wave propagation. Discrete and
Continuous Dynamical Systems, 2016, 36, 4367-4382.
0.9

High order marching schemes for the wave equation in complex geometry. Journal of Computational
Physics, 2004, 198, 295-309.

Debye sources and the numerical solution of the time harmonic Maxwell equations. Communications on Pure and Applied Mathematics, 2010, 63, 413-463.

On the accurate calculation of vortex shedding. Physics of Fluids A, Fluid Dynamics, 1990, 2, 883-885.
1.6

A fast direct solver for scattering from periodic structures with multiple material interfaces in two dimensions. Journal of Computational Physics, 2014, 258, 738-751.

83 Inverse Obstacle Scattering in Two Dimensions with Multiple Frequency Data and Multiple Angles of

Coulomb Interactions on Planar Structures: Inverting the Square Root of the Laplacian. SIAM Journal of Scientific Computing, 2001, 22, 2093-2108.
2.8

14

85 A fast solver for multi-particle scattering in a layered medium. Optics Express, 2014, 22, 20481.
3.4

14

A high-order wideband direct solver for electromagnetic scattering from bodies of revolution. Journal of Computational Physics, 2019, 387, 205-229.
3.8

14

Robust integral formulations for electromagnetic scattering from three-dimensional cavities.
Journal of Computational Physics, 2017, 345, 1-16.
3.8

Sensitivity analysis of photonic crystal fiber. Optics Express, 2004, 12, 4220.
3.4

12

On the Calculation of Displacement, Stress, and Strain Induced by Triangular Dislocations. Bulletin of the Seismological Society of America, 2012, 102, 2776-2780.

Decoupled field integral equations for electromagnetic scattering from homogeneous penetrable obstacles. Communications in Partial Differential Equations, 2018, 43, 159-184.

A fast spectral method for electrostatics in doubly periodic slit channels. Journal of Chemical
A mesh-free approach to acoustic scattering from multiple spheres nested inside a large sphere by
using diagonal translation operators. Journal of the Acoustical Society of America, 2010, 127, 850-861.
The solution of the scalar wave equation in the exterior of a sphere. Journal of Computational
Physics, 2014, 274, 191-207.
$3.8 \quad 10$

96 Debye Sources, Beltrami Fields, and a Complex Structure on Maxwell Fields. Communications on Pure
The Anisotropic Truncated Kernel Method for Convolution with Free-Space Green's Functions. SIAM
Journal of Scientific Computing, 2018, 40, A3733-A3754.
98

High-order discretization of a stable time-domain integral equation for 3D acoustic scattering.
Journal of Computational Physics, 2020, 402, 109047.

99 | A numerical study of the ̂̂ף2parameter for random suspensions of disks. Journal of Applied Physics, 19 |
| :--- |
| $77,2015-2019$. |

$100 \quad$| A Fast Semidirect Least Squares Algorithm for Hierarchically Block Separable Matrices. SIAM Journal |
| :--- |
| on Matrix Analysis and Applications, 2014, 35, $725-748$. |

Strongly consistent marching schemes for the wave equation. Journal of Computational Physics, 2003, 188, 194-208.
 3.8
 7

102

Pseudoâ€Spectral Methods for the Laplaceâ€Beltrami Equation and the Hodge Decomposition on Surfaces of Genus One. Numerical Methods for Partial Differential Equations, 2017, 33, 941-955.
3.8

| .6 | 7 |
| :--- | :--- | lournal of Computational Physics, 2015,299,98-105.

109

Fast multipole methods for the evaluation of layer potentials with locally-corrected quadratures. Journal of Computational Physics: X, 2021, 10, 100092.

A fast multipole method for the evaluation of elastostatic fields in a half-space with zero normal stress. Advances in Computational Mathematics, 2016, 42, 175-198.

An Augmented Regularized Combined Source Integral Equation for Nonconforming Meshes. IEEE
Transactions on Antennas and Propagation, 2019, 67, 2513-2521.

On the accurate evaluation of unsteady Stokes layer potentials in moving two-dimensional geometries. Advances in Computational Mathematics, 2020, 46, 1.

